Edexcel F2 2018 Specimen — Question 7

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2018
SessionSpecimen
TopicPolar coordinates

7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b197811e-1df5-4937-b0d8-f98f82412c76-24_480_926_217_511} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the two curves given by the polar equations $$\begin{array} { l l } r = \sqrt { 3 } \sin \theta , & 0 \leqslant \theta \leqslant \pi
r = 1 + \cos \theta , & 0 \leqslant \theta \leqslant \pi \end{array}$$
  1. Verify that the curves intersect at the point \(P\) with polar coordinates \(\left( \frac { 3 } { 2 } , \frac { \pi } { 3 } \right)\). The region \(R\), bounded by the two curves, is shown shaded in Figure 1.
  2. Use calculus to find the exact area of \(R\), giving your answer in the form \(a ( \pi - \sqrt { 3 } )\), where \(a\) is a constant to be found.
    VIIIV SIHI NI JIIIM ION OCVIIIV SIHI NI JIHM I I ON OCVI4V SIHI NI JIIYM IONOO