Questions — Edexcel Paper 2 (135 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel Paper 2 Specimen Q5
  1. The line \(l\) has equation
$$3 x - 2 y = k$$ where \(k\) is a real constant.
Given that the line \(l\) intersects the curve with equation $$y = 2 x ^ { 2 } - 5$$ at two distinct points, find the range of possible values for \(k\).
Edexcel Paper 2 Specimen Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{659a0479-c8c6-418b-b8a9-67ad68474023-12_624_1057_258_504} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = ( 8 - x ) \ln x , \quad x > 0$$ The curve cuts the \(x\)-axis at the points \(A\) and \(B\) and has a maximum turning point at \(Q\), as shown in Figure 2.
  1. Find the \(x\) coordinate of \(A\) and the \(x\) coordinate of \(B\).
  2. Show that the \(x\) coordinate of \(Q\) satisfies $$x = \frac { 8 } { 1 + \ln x }$$
  3. Show that the \(x\) coordinate of \(Q\) lies between 3.5 and 3.6
  4. Use the iterative formula $$x _ { n + 1 } = \frac { 8 } { 1 + \ln x _ { n } } \quad n \in \mathbb { N }$$ with \(x _ { 1 } = 3.5\) to
    1. find the value of \(x _ { 5 }\) to 4 decimal places,
    2. find the \(x\) coordinate of \(Q\) accurate to 2 decimal places.
Edexcel Paper 2 Specimen Q7
  1. A bacterial culture has area \(p \mathrm {~mm} ^ { 2 }\) at time \(t\) hours after the culture was placed onto a circular dish.
A scientist states that at time \(t\) hours, the rate of increase of the area of the culture can be modelled as being proportional to the area of the culture.
  1. Show that the scientist's model for \(p\) leads to the equation $$p = a \mathrm { e } ^ { k t }$$ where \(a\) and \(k\) are constants. The scientist measures the values for \(p\) at regular intervals during the first 24 hours after the culture was placed onto the dish. She plots a graph of \(\ln p\) against \(t\) and finds that the points on the graph lie close to a straight line with gradient 0.14 and vertical intercept 3.95
  2. Estimate, to 2 significant figures, the value of \(a\) and the value of \(k\).
  3. Hence show that the model for \(p\) can be rewritten as $$p = a b ^ { t }$$ stating, to 3 significant figures, the value of the constant \(b\). With reference to this model,
    1. interpret the value of the constant \(a\),
    2. interpret the value of the constant \(b\).
  4. State a long term limitation of the model for \(p\).
Edexcel Paper 2 Specimen Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{659a0479-c8c6-418b-b8a9-67ad68474023-18_367_709_280_676} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A bowl is modelled as a hemispherical shell as shown in Figure 3.
Initially the bowl is empty and water begins to flow into the bowl. When the depth of the water is \(h \mathrm {~cm}\), the volume of water, \(V \mathrm {~cm} ^ { 3 }\), according to the model is given by $$V = \frac { 1 } { 3 } \pi h ^ { 2 } ( 75 - h ) , \quad 0 \leqslant h \leqslant 24$$ The flow of water into the bowl is at a constant rate of \(160 \pi \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\) for \(0 \leqslant h \leqslant 12\)
  1. Find the rate of change of the depth of the water, in \(\mathrm { cm } \mathrm { s } ^ { - 1 }\), when \(h = 10\) Given that the flow of water into the bowl is increased to a constant rate of \(300 \pi \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\) for \(12 < h \leqslant 24\)
  2. find the rate of change of the depth of the water, in \(\mathrm { cms } ^ { - 1 }\), when \(h = 20\)
Edexcel Paper 2 Specimen Q9
  1. A circle with centre \(A ( 3 , - 1 )\) passes through the point \(P ( - 9,8 )\) and the point \(Q ( 15 , - 10 )\)
    1. Show that \(P Q\) is a diameter of the circle.
    2. Find an equation for the circle.
    A point \(R\) also lies on the circle. Given that the length of the chord \(P R\) is 20 units,
  2. find the length of the shortest distance from \(A\) to the chord \(P R\). Give your answer as a surd in its simplest form.
  3. Find the size of angle \(A R Q\), giving your answer to the nearest 0.1 of a degree.
Edexcel Paper 2 Specimen Q10
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{659a0479-c8c6-418b-b8a9-67ad68474023-22_554_862_260_603} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve \(C\) with parametric equations $$x = \ln ( t + 2 ) , \quad y = \frac { 1 } { t + 1 } , \quad t > - \frac { 2 } { 3 }$$
  1. State the domain of values of \(x\) for the curve \(C\). The finite region \(R\), shown shaded in Figure 4, is bounded by the curve \(C\), the line with equation \(x = \ln 2\), the \(x\)-axis and the line with equation \(x = \ln 4\)
  2. Use calculus to show that the area of \(R\) is \(\ln \left( \frac { 3 } { 2 } \right)\).
Edexcel Paper 2 Specimen Q11
  1. The second, third and fourth terms of an arithmetic sequence are \(2 k , 5 k - 10\) and \(7 k - 14\) respectively, where \(k\) is a constant.
Show that the sum of the first \(n\) terms of the sequence is a square number.
Edexcel Paper 2 Specimen Q12
  1. A curve \(C\) is given by the equation
$$\sin x + \cos y = 0.5 \quad - \frac { \pi } { 2 } \leqslant x < \frac { 3 \pi } { 2 } , - \pi < y < \pi$$ A point \(P\) lies on \(C\).
The tangent to \(C\) at the point \(P\) is parallel to the \(x\)-axis.
Find the exact coordinates of all possible points \(P\), justifying your answer.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel Paper 2 Specimen Q13
13. (a) Show that $$\operatorname { cosec } 2 x + \cot 2 x \equiv \cot x , \quad x \neq 90 n ^ { \circ } , n \in \mathbb { Z }$$ (b) Hence, or otherwise, solve, for \(0 \leqslant \theta < 180 ^ { \circ }\), $$\operatorname { cosec } \left( 4 \theta + 10 ^ { \circ } \right) + \cot \left( 4 \theta + 10 ^ { \circ } \right) = \sqrt { 3 }$$ You must show your working.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel Paper 2 Specimen Q14
  1. (i) Kayden claims that
$$3 ^ { x } \geqslant 2 ^ { x }$$ Determine whether Kayden's claim is always true, sometimes true or never true, justifying your answer.
(ii) Prove that \(\sqrt { 3 }\) is an irrational number.