Edexcel Paper 2 Specimen — Question 13

Exam BoardEdexcel
ModulePaper 2 (Paper 2)
SessionSpecimen
TopicReciprocal Trig & Identities

13. (a) Show that $$\operatorname { cosec } 2 x + \cot 2 x \equiv \cot x , \quad x \neq 90 n ^ { \circ } , n \in \mathbb { Z }$$ (b) Hence, or otherwise, solve, for \(0 \leqslant \theta < 180 ^ { \circ }\), $$\operatorname { cosec } \left( 4 \theta + 10 ^ { \circ } \right) + \cot \left( 4 \theta + 10 ^ { \circ } \right) = \sqrt { 3 }$$ You must show your working.
(Solutions based entirely on graphical or numerical methods are not acceptable.)