| Exam Board | Edexcel |
| Module | Paper 2 (Paper 2) |
| Session | Specimen |
| Topic | Reciprocal Trig & Identities |
13. (a) Show that
$$\operatorname { cosec } 2 x + \cot 2 x \equiv \cot x , \quad x \neq 90 n ^ { \circ } , n \in \mathbb { Z }$$
(b) Hence, or otherwise, solve, for \(0 \leqslant \theta < 180 ^ { \circ }\),
$$\operatorname { cosec } \left( 4 \theta + 10 ^ { \circ } \right) + \cot \left( 4 \theta + 10 ^ { \circ } \right) = \sqrt { 3 }$$
You must show your working.
(Solutions based entirely on graphical or numerical methods are not acceptable.)