Questions — Edexcel P3 (133 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel P3 2018 Specimen Q4
4. (i) Find $$\int _ { 5 } ^ { 13 } \frac { 1 } { ( 2 x - 1 ) } \mathrm { d } x$$ writing your answer in its simplest form.
(ii) Use integration to find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \sin 2 x + \sec \frac { 1 } { 3 } x \tan \frac { 1 } { 3 } x \mathrm {~d} x$$
VIIIV SIHI NI JIIYM IONOOVIUV SIHI NI JIIAM ION OOVI4V SIHI NI JIIIM I ON OO
Edexcel P3 2018 Specimen Q5
5. Given that $$y = \frac { 5 x ^ { 2 } - 10 x + 9 } { ( x - 1 ) ^ { 2 } } \quad x \neq 1$$ show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { k } { ( x - 1 ) ^ { 3 } }\), where \(k\) is a constant to be found.
(6)
Edexcel P3 2018 Specimen Q6
  1. The functions f and g are defined by
$$\mathrm { f } : x \mapsto \mathrm { e } ^ { x } + 2 \quad x \in \mathbb { R }$$ $$\mathrm { g } : x \mapsto \ln x \quad x > 0$$
  1. State the range of f .
  2. Find \(\mathrm { fg } ( x )\), giving \(y\) our answer in its simplest form.
  3. Find the exact value of \(x\) for which \(\mathrm { f } ( 2 x + 3 ) = 6\)
  4. Find \(\mathrm { f } ^ { - 1 }\) stating its domain.
  5. On the same axes sketch the curves with equation \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\), giving the coordinates of all the points where the curves cross the axes.
Edexcel P3 2018 Specimen Q7
  1. The point \(P\) lies on the curve with equation
$$x = ( 4 y - \sin 2 y ) ^ { 2 }$$ Given that \(P\) has \(( x , y )\) coordinates \(\left( p , \frac { \pi } { 2 } \right)\), where \(p\) is a constant,
  1. find the exact value of \(p\) The tangent to the curve at \(P\) cuts the \(y\)-axis at the point \(A\).
  2. Use calculus to find the coordinates of \(A\).
Edexcel P3 2018 Specimen Q8
8. In a controlled experiment, the number of microbes, \(N\), present in a culture \(T\) days after the start of the experiment were counted.
\(N\) and \(T\) are expected to satisfy a relationship of the form $$N = a T ^ { b } \quad \text { where } a \text { and } b \text { are constants }$$
  1. Show that this relationship can be expressed in the form $$\log _ { 10 } N = m \log _ { 10 } T + c$$ giving \(m\) and \(c\) in terms of the constants \(a\) and/or \(b\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d8e25332-3a45-43ca-a5b8-0a16f47f13b9-24_1223_1043_895_461} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows the line of best fit for values of \(\log _ { 10 } N\) plotted against values of \(\log _ { 10 } T\)
  2. Use the information provided to estimate the number of microbes present in the culture 3 days after the start of the experiment.
  3. With reference to the model, interpret the value of the constant \(a\).
Edexcel P3 2018 Specimen Q9
9. (a) Prove that $$\sec 2 A + \tan 2 A \equiv \frac { \cos A + \sin A } { \cos A - \sin A } \quad A \neq \frac { ( 2 n + 1 ) \pi } { 4 } \quad n \in \mathbb { Z }$$ (b) Hence solve, for \(0 \leqslant \theta < 2 \pi\) $$\sec 2 \theta + \tan 2 \theta = \frac { 1 } { 2 }$$ Give your answers to 3 decimal places.
VIIIV SIUI NI JIIIM I ON OCVIIV SIHI NI JIHM I I ON OCVIAV SIHI NI JIIYM IONOO
Edexcel P3 2018 Specimen Q10
10. The amount of an antibiotic in the bloodstream, from a given dose, is modelled by the formula $$x = D \mathrm { e } ^ { - 0.2 t }$$ where \(x\) is the amount of the antibiotic in the bloodstream in milligrams, \(D\) is the dose given in milligrams and \(t\) is the time in hours after the antibiotic has been given. A first dose of 15 mg of the antibiotic is given.
  1. Use the model to find the amount of the antibiotic in the bloodstream 4 hours after the dose is given. Give your answer in mg to 3 decimal places. A second dose of 15 mg is given 5 hours after the first dose has been given. Using the same model for the second dose,
  2. show that the total amount of the antibiotic in the bloodstream 2 hours after the second dose is given is 13.754 mg to 3 decimal places. No more doses of the antibiotic are given. At time \(T\) hours after the second dose is given, the total amount of the antibiotic in the bloodstream is 7.5 mg .
  3. Show that \(T = a \ln \left( b + \frac { b } { \mathrm { e } } \right)\), where \(a\) and \(b\) are integers to be determined.
Edexcel P3 2022 October Q8
  1. Express \(8 \sin x - 15 \cos x\) in the form \(R \sin ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\) Give the exact value of \(R\), and give the value of \(\alpha\), in radians, to 4 significant figures. $$\mathrm { f } ( x ) = \frac { 15 } { 41 + 16 \sin x - 30 \cos x } \quad x > 0$$
  2. Find
    1. the minimum value of \(\mathrm { f } ( x )\)
    2. the smallest value of \(x\) at which this minimum value occurs.
  3. State the \(y\) coordinate of the minimum points on the curve with equation $$y = 2 \mathrm { f } ( x ) - 5 \quad x > 0$$
  4. State the smallest value of \(x\) at which a maximum point occurs for the curve with equation $$y = - \mathrm { f } ( 2 x ) \quad x > 0$$ \section*{8. In this question you must show all stages of your working.
    In this question you must show all stages of your working.}