Edexcel P3 2022 October — Question 8

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2022
SessionOctober
TopicHarmonic Form

  1. Express \(8 \sin x - 15 \cos x\) in the form \(R \sin ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\) Give the exact value of \(R\), and give the value of \(\alpha\), in radians, to 4 significant figures. $$\mathrm { f } ( x ) = \frac { 15 } { 41 + 16 \sin x - 30 \cos x } \quad x > 0$$
  2. Find
    1. the minimum value of \(\mathrm { f } ( x )\)
    2. the smallest value of \(x\) at which this minimum value occurs.
  3. State the \(y\) coordinate of the minimum points on the curve with equation $$y = 2 \mathrm { f } ( x ) - 5 \quad x > 0$$
  4. State the smallest value of \(x\) at which a maximum point occurs for the curve with equation $$y = - \mathrm { f } ( 2 x ) \quad x > 0$$ \section*{8. In this question you must show all stages of your working.
    In this question you must show all stages of your working.}