Questions — Edexcel P2 (157 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel P2 2021 October Q8
8. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{124ee19f-8a49-42df-9f4b-5a1cc2139be9-24_739_736_411_605} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve \(C\) with equation $$y = \frac { 4 } { 3 } x ^ { 3 } - 11 x ^ { 2 } + k x \quad \text { where } k \text { is a constant }$$ The point \(M\) is the maximum turning point of \(C\) and is shown in Figure 2.
Given that the \(x\) coordinate of \(M\) is 2
  1. show that \(k = 28\)
  2. Determine the range of values of \(x\) for which \(y\) is increasing. The line \(l\) passes through \(M\) and is parallel to the \(x\)-axis.
    The region \(R\), shown shaded in Figure 2, is bounded by the curve \(C\), the line \(l\) and the \(y\)-axis.
  3. Find, by algebraic integration, the exact area of \(R\).
Edexcel P2 2021 October Q9
9. (a) Prove that for all positive values of \(x\) and \(y\), $$\frac { x + y } { 2 } \geqslant \sqrt { x y }$$ (b) Prove by counter-example that this inequality does not hold when \(x\) and \(y\) are both negative.
(1)
\includegraphics[max width=\textwidth, alt={}, center]{124ee19f-8a49-42df-9f4b-5a1cc2139be9-29_61_54_2608_1852}
Edexcel P2 2021 October Q10
10. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
  1. Solve, for \(- \frac { \pi } { 2 } < x < \frac { \pi } { 2 }\) $$\tan ^ { 2 } \left( 2 x + \frac { \pi } { 4 } \right) = 3$$
  2. Solve, for \(0 < \theta < 360 ^ { \circ }\) $$( 2 \sin \theta - \cos \theta ) ^ { 2 } = 1$$ giving your answers, as appropriate, to one decimal place.
Edexcel P2 2022 October Q1
  1. Given that \(a , b\) and \(c\) are integers greater than 0 such that
  • \(c = b + 2\)
  • \(a + b + c = 10\)
Prove, by exhaustion, that the product of \(a , b\) and \(c\) is always even.
You may use the table below to illustrate your answer. You may not need to use all rows of this table.
\(а\)\(b\)\(c\)
1
2
Edexcel P2 2022 October Q2
  1. A curve \(C\) has equation \(y = \mathrm { f } ( x )\) where
$$f ( x ) = ( 2 - k x ) ^ { 5 }$$ and \(k\) is a constant.
Given that when \(\mathrm { f } ( x )\) is divided by \(( 4 x - 5 )\) the remainder is \(\frac { 243 } { 32 }\)
  1. show that \(k = \frac { 2 } { 5 }\)
  2. Find the first three terms, in ascending powers of \(x\), of the binomial expansion of $$\left( 2 - \frac { 2 } { 5 } x \right) ^ { 5 }$$ giving each term in simplest form. Using the solution to part (b) and making your method clear,
  3. find the gradient of \(C\) at the point where \(x = 0\)
Edexcel P2 2022 October Q3
  1. A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by
$$a _ { n } = \cos ^ { 2 } \left( \frac { \mathrm { n } \pi } { 3 } \right)$$ Find the exact values of
    1. \(a _ { 1 }\)
    2. \(a _ { 2 }\)
    3. \(a _ { 3 }\)
  1. Hence find the exact value of 50 $$n + \cos ^ { 2 } \frac { n \pi } { 3 }$$ You must make your method clear.
Edexcel P2 2022 October Q4
  1. The weight of a baby mammal is monitored over a 16 -month period.
The weight of the mammal, \(w \mathrm {~kg}\), is given by $$w = \log _ { a } ( t + 5 ) - \log _ { a } 4 \quad 2 \leqslant t \leqslant 18$$ where \(t\) is the age of the mammal in months and \(a\) is a constant.
Given that the weight of the mammal was 10 kg when \(t = 3\)
  1. show that \(a = 1.072\) correct to 3 decimal places. Using \(a = 1.072\)
  2. find an equation for \(t\) in terms of \(w\)
  3. find the value of \(t\) when \(w = 15\), giving your answer to 3 significant figures.
Edexcel P2 2022 October Q5
  1. In this question you must show detailed reasoning.
Solutions relying entirely on calculator technology are not acceptable.
  1. Show that the equation $$( 3 \cos \theta - \tan \theta ) \cos \theta = 2$$ can be written as $$3 \sin ^ { 2 } \theta + \sin \theta - 1 = 0$$
  2. Hence solve for \(- \frac { \pi } { 2 } \leqslant x \leqslant \frac { \pi } { 2 }\) $$( 3 \cos 2 x - \tan 2 x ) \cos 2 x = 2$$
Edexcel P2 2022 October Q6
  1. The curve \(C _ { 1 }\) has equation \(y = \mathrm { f } ( x )\).
A table of values of \(x\) and \(y\) for \(y = \mathrm { f } ( x )\) is shown below, with the \(y\) values rounded to 4 decimal places where appropriate.
\(x\)00.511.52
\(y\)32.68332.42.14661.92
  1. Use the trapezium rule with all the values of \(y\) in the table to find an approximation for $$\int _ { 0 } ^ { 2 } f ( x ) d x$$ giving your answer to 3 decimal places. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{6f926d53-c6de-4eb7-9d18-596f61ec26e1-16_629_592_1105_402} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{6f926d53-c6de-4eb7-9d18-596f61ec26e1-16_540_456_1194_1192} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} The region \(R\), shown shaded in Figure 1, is bounded by
    • the curve \(C _ { 1 }\)
    • the curve \(C _ { 2 }\) with equation \(y = 2 - \frac { 1 } { 4 } x ^ { 2 }\)
    • the line with equation \(x = 2\)
    • the \(y\)-axis
    The region \(R\) forms part of the design for a logo shown in Figure 2.
    The design consists of the shaded region \(R\) inside a rectangle of width 2 and height 3 Using calculus and the answer to part (a),
  2. calculate an estimate for the percentage of the logo which is shaded.
Edexcel P2 2022 October Q7
  1. The curve \(C\) has equation
$$y = \frac { 12 x ^ { 3 } ( x - 7 ) + 14 x ( 13 x - 15 ) } { 21 \sqrt { x } } \quad x > 0$$
  1. Write the equation of \(C\) in the form $$y = a x ^ { \frac { 7 } { 2 } } + b x ^ { \frac { 5 } { 2 } } + c x ^ { \frac { 3 } { 2 } } + d x ^ { \frac { 1 } { 2 } }$$ where \(a , b , c\) and \(d\) are fully simplified constants. The curve \(C\) has three turning points.
    Using calculus,
  2. show that the \(x\) coordinates of the three turning points satisfy the equation $$2 x ^ { 3 } - 10 x ^ { 2 } + 13 x - 5 = 0$$ Given that the \(x\) coordinate of one of the turning points is 1
  3. find, using algebra, the exact \(x\) coordinates of the other two turning points.
    (Solutions based entirely on calculator technology are not acceptable.)
Edexcel P2 2022 October Q8
  1. A geometric sequence has first term \(a\) and common ratio \(r\)
Given that \(S _ { \infty } = 3 a\)
  1. show that \(r = \frac { 2 } { 3 }\) Given also that $$u _ { 2 } - u _ { 4 } = 16$$ where \(u _ { k }\) is the \(k ^ { \text {th } }\) term of this sequence,
  2. find the value of \(S _ { 10 }\) giving your answer to one decimal place.
Edexcel P2 2022 October Q9
  1. In this question you must show detailed reasoning.
Solutions relying entirely on calculator technology are not acceptable. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6f926d53-c6de-4eb7-9d18-596f61ec26e1-26_723_455_413_804} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows
  • the curve \(C _ { 1 }\) with equation \(y = x ^ { 3 } - 5 x ^ { 2 } + 3 x + 14\)
  • the circle \(C _ { 2 }\) with centre \(T\)
The point \(T\) is the minimum turning point of \(C _ { 1 }\)
Using Figure 3 and calculus,
  1. find the coordinates of \(T\) The curve \(C _ { 1 }\) intersects the circle \(C _ { 2 }\) at the point \(A\) with \(x\) coordinate 2
  2. Find an equation of the circle \(C _ { 2 }\) The line \(l\) shown in Figure 3, is the tangent to circle \(C _ { 2 }\) at \(A\)
  3. Show that an equation of \(l\) is $$y = \frac { 1 } { 3 } x + \frac { 22 } { 3 }$$ The region \(R\), shown shaded in Figure 3, is bounded by \(C _ { 1 } , l\) and the \(y\)-axis.
  4. Find the exact area of \(R\).
Edexcel P2 2022 October Q10
  1. Given \(a = \log _ { 2 } 3\)
    1. write, in simplest form, in terms of \(a\),
      (a) \(\log _ { 2 } 9\)
      (b) \(\log _ { 2 } \left( \frac { \sqrt { 3 } } { 16 } \right)\)
    2. Solve
    $$3 ^ { x } \times 2 ^ { x + 4 } = 6$$ giving your answer, in simplest form, in terms of \(a\).
Edexcel P2 2023 October Q1
  1. Given that \(a , b\) and \(c\) are integers greater than 0 such that
  • \(c = 3 a + 1\)
  • \(a + b + c = 15\)
    prove, by exhaustion, that the product \(a b c\) is always a multiple of 4
    You may use the table below to illustrate your answer.
You may not need to use all rows of this table.
\(a\)\(b\)\(c\)\(a b c\)
Edexcel P2 2023 October Q2
  1. A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$\begin{gathered} u _ { 1 } = 3
u _ { n + 1 } = 2 - \frac { 4 } { u _ { n } } \end{gathered}$$
  1. Find the value of \(u _ { 2 }\), the value of \(u _ { 3 }\) and the value of \(u _ { 4 }\)
  2. Find the value of $$\sum _ { r = 1 } ^ { 100 } u _ { r }$$
Edexcel P2 2023 October Q3
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Solve, for \(0 < \theta \leqslant 360 ^ { \circ }\) the equation $$2 \tan \theta + 3 \sin \theta = 0$$ giving your answers, as appropriate, to one decimal place.
  2. Hence, or otherwise, find the smallest positive solution of $$2 \tan \left( 2 x + 40 ^ { \circ } \right) + 3 \sin \left( 2 x + 40 ^ { \circ } \right) = 0$$ giving your answer to one decimal place.
Edexcel P2 2023 October Q4
  1. In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable. $$f ( x ) = 4 x ^ { 3 } + a x ^ { 2 } - 29 x + b$$ where \(a\) and \(b\) are constants.
Given that \(( 2 x + 1 )\) is a factor of \(\mathrm { f } ( x )\),
  1. show that $$a + 4 b = - 56$$ Given also that when \(\mathrm { f } ( x )\) is divided by \(( x - 2 )\) the remainder is - 25
  2. find a second simplified equation linking \(a\) and \(b\).
  3. Hence, using algebra and showing your working,
    1. find the value of \(a\) and the value of \(b\),
    2. fully factorise \(\mathrm { f } ( x )\).
Edexcel P2 2023 October Q5
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Solve $$3 ^ { a } = 70$$ giving the answer to 3 decimal places.
  2. Find the exact value of \(b\) such that $$4 + 3 \log _ { 3 } b = \log _ { 3 } 5 b$$
Edexcel P2 2023 October Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{66abdef1-072e-41eb-a933-dd51a96330ff-14_488_1511_246_278} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A river is being studied.
At one particular place, the river is 15 m wide.
The depth, \(y\) metres, of the river is measured at a point \(x\) metres from one side of the river. Figure 1 shows a plot of the cross-section of the river and the coordinate values \(( x , y )\)
  1. Use the trapezium rule with all the \(y\) values given in Figure 1 to estimate the cross-sectional area of the river. The water in the river is modelled as flowing at a constant speed of \(1.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) across the whole of the cross-section.
  2. Use the model and the answer to part (a) to estimate the volume of water flowing through this section of the river each minute, giving your answer in \(\mathrm { m } ^ { 3 }\) to 2 significant figures. Assuming the model,
  3. state, giving a reason for your answer, whether your answer for part (b) is an overestimate or an underestimate of the true volume of water flowing through this section of the river each minute.
Edexcel P2 2023 October Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{66abdef1-072e-41eb-a933-dd51a96330ff-16_949_940_246_566} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of
  • the circle \(C\) with centre \(X ( 4 , - 3 )\)
  • the line \(l\) with equation \(y = \frac { 5 } { 2 } x - \frac { 55 } { 2 }\)
Given that \(l\) is the tangent to \(C\) at the point \(N\),
  1. show that an equation for the straight line passing through \(X\) and \(N\) is $$2 x + 5 y + 7 = 0$$
  2. Hence find
    1. the coordinates of \(N\),
    2. an equation for \(C\).
Edexcel P2 2023 October Q8
  1. In a large theatre there are \(n\) rows of seats, where \(n\) is a constant.
The number of seats in the first row is \(a\), where \(a\) is a constant.
In each subsequent row there are 4 more seats than in the previous row so that
  • in the 2 nd row there are \(( a + 4 )\) seats
  • in the 3rd row there are ( \(a + 8\) ) seats
  • the number of seats in each row form an arithmetic sequence
Given that the total number of seats in the first 10 rows is 360
  1. find the value of \(a\). Given also that the total number of seats in the \(n\) rows is 2146
  2. show that $$n ^ { 2 } + 8 n - 1073 = 0$$
  3. Hence
    1. state the number of rows of seats in the theatre,
    2. find the maximum number of seats in any one row.
Edexcel P2 2023 October Q9
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{66abdef1-072e-41eb-a933-dd51a96330ff-24_803_1050_251_511} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. Figure 3 shows a sketch of part of the curve \(C\) with equation $$y = \frac { 2 } { 3 } x ^ { 2 } - 9 \sqrt { x } + 13 \quad x \geqslant 0$$
  1. Find, using calculus, the range of values of \(x\) for which \(y\) is increasing. The point \(P\) lies on \(C\) and has coordinates (9, 40).
    The line \(l\) is the tangent to \(C\) at the point \(P\).
    The finite region \(R\), shown shaded in Figure 3, is bounded by the curve \(C\), the line \(l\), the \(x\)-axis and the \(y\)-axis.
  2. Find, using calculus, the exact area of \(R\).
Edexcel P2 2023 October Q10
  1. (i) (a) Find, in ascending powers of \(x\), the 2nd, 3rd and 5th terms of the binomial expansion of
$$( 3 + 2 x ) ^ { 6 }$$ For a particular value of \(x\), these three terms form consecutive terms in a geometric series.
(b) Find this value of \(x\).
(ii) In a different geometric series,
  • the first term is \(\sin ^ { 2 } \theta\)
  • the common ratio is \(2 \cos \theta\)
  • the sum to infinity is \(\frac { 8 } { 5 }\)
    (a) Show that
$$5 \cos ^ { 2 } \theta - 16 \cos \theta + 3 = 0$$ (b) Hence find the exact value of the 2nd term in the series.
Edexcel P2 2018 Specimen Q1
1. $$\mathrm { f } ( x ) = x ^ { 4 } + x ^ { 3 } + 2 x ^ { 2 } + a x + b ,$$ where \(a\) and \(b\) are constants.
When \(\mathrm { f } ( x )\) is divided by ( \(x - 1\) ), the remainder is 7
  1. Show that \(a + b = 3\) When \(\mathrm { f } ( x )\) is divided by ( \(x + 2\) ), the remainder is - 8
  2. Find the value of \(a\) and the value of \(b\)
    VIIIV SIHI NI JIIIM ION OCVIIV SIHI NI JINAM ION OCVEYV SIHI NI JULIM ION OO
Edexcel P2 2018 Specimen Q2
2. The first term of a geometric series is 20 and the common ratio is \(\frac { 7 } { 8 }\). The sum to infinity of the series is \(S _ { \infty }\)
  1. Find the value of \(S _ { \infty }\) The sum to \(N\) terms of the series is \(S _ { N }\)
  2. Find, to 1 decimal place, the value of \(S _ { 12 }\)
  3. Find the smallest value of \(N\), for which \(S _ { \infty } - S _ { N } < 0.5\)
    2. The first term of a geometric series is 20 and the common ratio is \(\frac { 7 } { 8 }\). The sum to infinity
    of the series is \(S _ { \infty }\)