Questions — Edexcel FP3 (136 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FP3 Q1
  1. Find the exact values of x for which
$$4 \tanh ^ { 2 } x - 2 \operatorname { sech } ^ { 2 } x = 3 ,$$ giving your answers in the form \(\pm \ln \mathrm { a }\), where a is real.
Edexcel FP3 Q2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{63249f82-4eab-47bc-aeae-3af8ec737b51-2_499_828_651_621} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = 2 \cosh \left( \frac { 1 } { 2 } x \right)\). The points \(A\) and \(B\) lie on the curve and have \(x\)-coordinates \(- \ln 2\) and \(\ln 2\) respectively. The arc of the curve joining \(A\) and \(B\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the exact area of the curved surface area formed.
(Total 7 marks)
Edexcel FP3 Q3
3. Using the substitution \(\mathrm { x } = \frac { 3 } { \sinh \theta }\), or otherwise, find the exact value of $$\int _ { 4 } ^ { 3 \sqrt { } 3 } \frac { 1 } { x \sqrt { } \left( x ^ { 2 } + 9 \right) } d x$$ giving your answer in the form a ln b , where a and b are rational numbers.
(Total 8 marks)
Edexcel FP3 Q4
4. \(y = \arctan ( \sqrt { } x ) , \quad x > 0,0 < y < \frac { \pi } { 2 }\).
  1. Find the value of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(\mathrm { x } = \frac { 1 } { 4 }\).
  2. Show that \(2 x ( 1 + x ) \frac { d ^ { 2 } y } { d x ^ { 2 } } + ( 1 + 3 x ) \frac { d y } { d x } = 0\).
Edexcel FP3 Q5
5. $$\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { \mathrm { n } } x \mathrm { dx } , \mathrm { n } \geqslant 0$$
  1. Show that \(I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }\), for \(n \geqslant 2\)
  2. Using the result in part (a), find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } x \sin ^ { 5 } x \cos x d x$$
Edexcel FP3 Q6
  1. Referred to a fixed origin O , the points \(\mathrm { P } , \mathrm { Q }\) and R have coordinates \(( \mathbf { i } - 3 \mathbf { j } + \mathbf { k } ) , ( - 2 \mathbf { i } + \mathbf { j } - 3 \mathbf { k } )\) and \(( 3 \mathbf { j } - 5 \mathbf { k } )\) respectively. The plane \(\Pi _ { 1 }\) passes through \(\mathrm { P } , \mathrm { Q }\) and R . Find
    1. \(\overrightarrow { \mathrm { PQ } } \times \overrightarrow { \mathrm { QR } }\),
    2. a cartesian equation of \(\Pi _ { 1 }\).
    The plane \(\Pi _ { 2 }\) has equation \(\mathbf { r }\). ( \(\mathbf { i } + \mathbf { j } - \mathbf { k }\) ) \(= 6\). The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) intersect in the line I .
  2. Find a vector equation of I, giving your answer in the form ( \(\mathbf { r } - \mathbf { a }\) ) \(\times \mathbf { b } = \mathbf { 0 }\).
Edexcel FP3 Q7
7. \(\quad \mathbf { A } = \left( \begin{array} { c c c } 2 & \mathrm { k } & 0
1 & 1 & 0
0 & - 2 & 1 \end{array} \right)\), where k is a constant. Given that \(\left( \begin{array} { c } 9
3
- 2 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\),
  1. show that \(\mathrm { k } = 6\),
  2. find the eigenvalues of \(\mathbf { A }\). A transformation \(\mathrm { T } : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { A }\).
    The point P has coordinates \(( \mathrm { t } - 2 , \mathrm { t } , 2 \mathrm { t } )\) where t is a parameter.
  3. Show that, for any value of \(t\), the transformation \(T\) maps \(P\) onto a point on the line with equation \(x - 4 y - 4 = 0\)
    (5)
Edexcel FP3 Q8
8. The point \(\mathrm { P } ( 5 \sec \mathrm { u } , 3 \tan \mathrm { u } )\) lies on the hyperbola H with equation \(\frac { \mathrm { x } ^ { 2 } } { 25 } - \frac { \mathrm { y } ^ { 2 } } { 9 } = 1\). The tangent to \(H\) at \(P\) intersects the asymptote of \(H\) with equation \(y = \frac { 3 } { 5 } x\) at the point \(R\) and the asymptote with equation \(\mathrm { y } = - \frac { 3 } { 5 } \mathrm { x }\) at the point S .
  1. Use differentiation to show that an equation of the tangent to H at P is $$3 x = 5 y \sin u + 15 \cos u$$
  2. Prove that P is the mid-point of RS.
Edexcel FP3 Q2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4255ef1b-2186-4a7e-adf3-a963601c95b2-04_333_360_328_794} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The points \(A , B\) and \(C\) have position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\) respectively, relative to a fixed origin \(O\), as shown in Figure 1. It is given that $$\mathbf { a } = \mathbf { i } + \mathbf { j } , \quad \mathbf { b } = 3 \mathbf { i } - \mathbf { j } + \mathbf { k } \quad \text { and } \quad \mathbf { c } = 2 \mathbf { i } + \mathbf { j } - \mathbf { k } .$$ Calculate
  1. \(\mathbf { b } \times \mathbf { c }\),
  2. a.(b \(\times \mathbf { c ) }\),
  3. the area of triangle \(O B C\),
  4. the volume of the tetrahedron \(O A B C\).
Edexcel FP3 2009 June Q1
  1. Solve the equation
$$7 \operatorname { sech } x - \tanh x = 5$$ Give your answers in the form \(\ln a\) where \(a\) is a rational number.
Edexcel FP3 2009 June Q2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8b3dd4a1-b270-4bd7-88d6-fe10601f9d74-03_333_360_328_794} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The points \(A , B\) and \(C\) have position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\) respectively, relative to a fixed origin \(O\), as shown in Figure 1. It is given that $$\mathbf { a } = \mathbf { i } + \mathbf { j } , \quad \mathbf { b } = 3 \mathbf { i } - \mathbf { j } + \mathbf { k } \quad \text { and } \quad \mathbf { c } = 2 \mathbf { i } + \mathbf { j } - \mathbf { k } .$$ Calculate
  1. \(\mathbf { b } \times \mathbf { c }\),
  2. a.(b \(\times \mathbf { c ) }\),
  3. the area of triangle \(O B C\),
  4. the volume of the tetrahedron \(O A B C\).
Edexcel FP3 2009 June Q3
3. $$\mathbf { M } = \left( \begin{array} { r r r } 6 & 1 & - 1
0 & 7 & 0
3 & - 1 & 2 \end{array} \right)$$
  1. Show that 7 is an eigenvalue of the matrix \(\mathbf { M }\) and find the other two eigenvalues of \(\mathbf { M }\).
  2. Find an eigenvector corresponding to the eigenvalue 7.
Edexcel FP3 2009 June Q4
  1. Given that \(y = \operatorname { arsinh } ( \sqrt { } x ) , x > 0\),
    1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer as a simplified fraction.
    2. Hence, or otherwise, find
    $$\int _ { \frac { 1 } { 4 } } ^ { 4 } \frac { 1 } { \sqrt { [ x ( x + 1 ) ] } } \mathrm { d } x$$ giving your answer in the form \(\ln \left( \frac { a + b \sqrt { } 5 } { 2 } \right)\), where \(a\) and \(b\) are integers.
Edexcel FP3 2009 June Q5
5. $$I _ { n } = \int _ { 0 } ^ { 5 } \frac { x ^ { n } } { \sqrt { } \left( 25 - x ^ { 2 } \right) } d x , \quad n \geqslant 0$$
  1. Find an expression for \(\int \frac { x } { \sqrt { } \left( 25 - x ^ { 2 } \right) } \mathrm { d } x , \quad 0 \leqslant x \leqslant 5\).
  2. Using your answer to part (a), or otherwise, show that $$I _ { n } = \frac { 25 ( n - 1 ) } { n } I _ { n - 2 } \quad n \geqslant 2$$
  3. Find \(I _ { 4 }\) in the form \(k \pi\), where \(k\) is a fraction.
Edexcel FP3 2009 June Q6
  1. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1\), where \(a\) and \(b\) are constants.
The line \(L\) has equation \(y = m x + c\), where \(m\) and \(c\) are constants.
  1. Given that \(L\) and \(H\) meet, show that the \(x\)-coordinates of the points of intersection are the roots of the equation $$\left( a ^ { 2 } m ^ { 2 } - b ^ { 2 } \right) x ^ { 2 } + 2 a ^ { 2 } m c x + a ^ { 2 } \left( c ^ { 2 } + b ^ { 2 } \right) = 0$$ Hence, given that \(L\) is a tangent to \(H\),
  2. show that \(a ^ { 2 } m ^ { 2 } = b ^ { 2 } + c ^ { 2 }\). The hyperbola \(H ^ { \prime }\) has equation \(\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1\).
  3. Find the equations of the tangents to \(H ^ { \prime }\) which pass through the point \(( 1,4 )\).
Edexcel FP3 2009 June Q7
7. The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = \left( \begin{array} { r } 1
- 1
2 \end{array} \right) + \lambda \left( \begin{array} { r } - 1
3
4 \end{array} \right) \text { and } \quad \mathbf { r } = \left( \begin{array} { r } \alpha
- 4
0 \end{array} \right) + \mu \left( \begin{array} { l } 0
3
2 \end{array} \right) .$$ If the lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect, find
  1. the value of \(\alpha\),
  2. an equation for the plane containing the lines \(l _ { 1 }\) and \(l _ { 2 }\), giving your answer in the form \(a x + b y + c z + d = 0\), where \(a , b , c\) and \(d\) are constants. For other values of \(\alpha\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) do not intersect and are skew lines.
    Given that \(\alpha = 2\),
  3. find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\).
Edexcel FP3 2009 June Q8
  1. A curve, which is part of an ellipse, has parametric equations
$$x = 3 \cos \theta , \quad y = 5 \sin \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 } .$$ The curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
  1. Show that the area of the surface generated is given by the integral $$k \pi \int _ { 0 } ^ { \alpha } \sqrt { } \left( 16 c ^ { 2 } + 9 \right) \mathrm { d } c , \quad \text { where } c = \cos \theta$$ and where \(k\) and \(\alpha\) are constants to be found.
  2. Using the substitution \(c = \frac { 3 } { 4 } \sinh u\), or otherwise, evaluate the integral, showing all of your working and giving the final answer to 3 significant figures.
Edexcel FP3 2010 June Q1
  1. The line \(x = 8\) is a directrix of the ellipse with equation
$$\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 , \quad a > 0 , b > 0$$ and the point \(( 2,0 )\) is the corresponding focus.
Find the value of \(a\) and the value of \(b\).
Edexcel FP3 2010 June Q2
2. Use calculus to find the exact value of \(\int _ { - 2 } ^ { 1 } \frac { 1 } { x ^ { 2 } + 4 x + 13 } \mathrm {~d} x\).
Edexcel FP3 2010 June Q3
3. (a) Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that $$\cosh 2 x = 1 + 2 \sinh ^ { 2 } x$$ (b) Solve the equation $$\cosh 2 x - 3 \sinh x = 15$$ giving your answers as exact logarithms.
Edexcel FP3 2010 June Q4
4. \(\quad I _ { n } = \int _ { 0 } ^ { a } ( a - x ) ^ { n } \cos x \mathrm {~d} x , \quad a > 0 , \quad n \geqslant 0\)
  1. Show that, for \(n \geqslant 2\), $$I _ { n } = n \tilde { a } ^ { - 1 } - n ( n - 1 ) I _ { n - 2 }$$
  2. Hence evaluate \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \left( \frac { \pi } { 2 } - x \right) ^ { 2 } \cos x \mathrm {~d} x\).
Edexcel FP3 2010 June Q5
  1. Given that \(y = ( \operatorname { arcosh } 3 x ) ^ { 2 }\), where \(3 x > 1\), show that
    1. \(\left( 9 x ^ { 2 } - 1 \right) \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } = 36 y\),
    2. \(\left( 9 x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 9 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 18\).
Edexcel FP3 2010 June Q6
6. \(\mathbf { M } = \left( \begin{array} { c c c } 1 & 0 & 3
0 & - 2 & 1
k & 0 & 1 \end{array} \right)\), where \(k\) is a constant. Given that \(\left( \begin{array} { l } 6
1
6 \end{array} \right)\) is an eigenvector of \(\mathbf { M }\),
  1. find the eigenvalue of \(\mathbf { M }\) corresponding to \(\left( \begin{array} { l } 6
    1
    6 \end{array} \right)\),
  2. show that \(k = 3\),
  3. show that \(\mathbf { M }\) has exactly two eigenvalues. A transformation \(T : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by \(\mathbf { M }\).
    The transformation \(T\) maps the line \(l _ { 1 }\), with cartesian equations \(\frac { x - 2 } { 1 } = \frac { y } { - 3 } = \frac { z + 1 } { 4 }\), onto the line \(l _ { 2 }\).
  4. Taking \(k = 3\), find cartesian equations of \(l _ { 2 }\).
Edexcel FP3 2010 June Q7
7. The plane \(\Pi\) has vector equation $$\mathbf { r } = 3 \mathbf { i } + \mathbf { k } + \lambda ( - 4 \mathbf { i } + \mathbf { j } ) + \mu ( 6 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } )$$
  1. Find an equation of \(\Pi\) in the form \(\mathbf { r } \cdot \mathbf { n } = p\), where \(\mathbf { n }\) is a vector perpendicular to \(\Pi\) and \(p\) is a constant. The point \(P\) has coordinates \(( 6,13,5 )\). The line \(l\) passes through \(P\) and is perpendicular to \(\Pi\). The line \(l\) intersects \(\Pi\) at the point \(N\).
  2. Show that the coordinates of \(N\) are \(( 3,1 , - 1 )\). The point \(R\) lies on \(\Pi\) and has coordinates \(( 1,0,2 )\).
  3. Find the perpendicular distance from \(N\) to the line \(P R\). Give your answer to 3 significant figures.
Edexcel FP3 2010 June Q8
8. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 4 } = 1\). The line \(l _ { 1 }\) is the tangent to \(H\) at the point \(P ( 4 \sec t , 2 \tan t )\).
  1. Use calculus to show that an equation of \(l _ { 1 }\) is $$2 y \sin t = x - 4 \cos t$$ The line \(l _ { 2 }\) passes through the origin and is perpendicular to \(l _ { 1 }\).
    The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(Q\).
  2. Show that, as \(t\) varies, an equation of the locus of \(Q\) is $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 16 x ^ { 2 } - 4 y ^ { 2 }$$