7. The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations
$$\mathbf { r } = \left( \begin{array} { r }
1
- 1
2
\end{array} \right) + \lambda \left( \begin{array} { r }
- 1
3
4
\end{array} \right) \text { and } \quad \mathbf { r } = \left( \begin{array} { r }
\alpha
- 4
0
\end{array} \right) + \mu \left( \begin{array} { l }
0
3
2
\end{array} \right) .$$
If the lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect, find
- the value of \(\alpha\),
- an equation for the plane containing the lines \(l _ { 1 }\) and \(l _ { 2 }\), giving your answer in the form \(a x + b y + c z + d = 0\), where \(a , b , c\) and \(d\) are constants.
For other values of \(\alpha\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) do not intersect and are skew lines.
Given that \(\alpha = 2\), - find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\).