Questions — CAIE (7659 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2017 June Q10
10 It is given that \(x = t ^ { \frac { 1 } { 2 } }\), where \(x > 0\) and \(t > 0\), and \(y\) is a function of \(x\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 t ^ { \frac { 1 } { 2 } } \frac { \mathrm {~d} y } { \mathrm {~d} t }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 4 t \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } }\).
  2. Hence show that the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 8 x + \frac { 1 } { x } \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 12 x ^ { 2 } y = 4 x ^ { 2 } \mathrm { e } ^ { - x ^ { 2 } }$$ reduces to the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 3 y = \mathrm { e } ^ { - t }$$
  3. Find the general solution of ( \(*\) ), giving \(y\) in terms of \(x\).
CAIE FP1 2017 June Q11
11 The curve \(C\) has polar equation \(r = a ( 1 + \sin \theta )\) for \(- \pi < \theta \leqslant \pi\), where \(a\) is a positive constant.
  1. Sketch \(C\).
  2. Find the area of the region enclosed by \(C\).
  3. Show that the length of the arc of \(C\) from the pole to the point furthest from the pole is given by $$s = ( \sqrt { } 2 ) a \int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \sqrt { } ( 1 + \sin \theta ) \mathrm { d } \theta$$
  4. Show that the substitution \(u = 1 + \sin \theta\) reduces this integral for \(s\) to \(( \sqrt { } 2 ) a \int _ { 0 } ^ { 2 } \frac { 1 } { \sqrt { } ( 2 - u ) } \mathrm { d } u\). Hence evaluate \(s\).
CAIE FP1 2017 June Q12 EITHER
The curve \(C\) has equation \(y = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) for \(0 \leqslant x \leqslant 4\).
  1. The region \(R\) is bounded by \(C\), the \(x\)-axis, the \(y\)-axis and the line \(x = 4\). Find, in terms of e, the coordinates of the centroid of the region \(R\).
  2. Show that \(\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\), where \(s\) denotes the arc length of \(C\), and find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2017 June Q12 OR
The position vectors of the points \(A , B , C , D\) are $$\mathbf { i } + \mathbf { j } + 3 \mathbf { k } , \quad 3 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } , \quad 3 \mathbf { i } - \mathbf { j } + \mathbf { k } , \quad 5 \mathbf { i } - 5 \mathbf { j } + \alpha \mathbf { k } ,$$ respectively, where \(\alpha\) is a positive integer. It is given that the shortest distance between the line \(A B\) and the line \(C D\) is equal to \(2 \sqrt { } 2\).
  1. Show that the possible values of \(\alpha\) are 3 and 5 .
  2. Using \(\alpha = 3\), find the shortest distance of the point \(D\) from the line \(A C\), giving your answer correct to 3 significant figures.
  3. Using \(\alpha = 3\), find the acute angle between the planes \(A B C\) and \(A B D\), giving your answer in degrees.
    \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
    To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2018 June Q1
1 The curve \(C\) is defined parametrically by $$x = \mathrm { e } ^ { t } - t , \quad y = 4 \mathrm { e } ^ { \frac { 1 } { 2 } t }$$ Find the length of the arc of \(C\) from the point where \(t = 0\) to the point where \(t = 3\).
CAIE FP1 2018 June Q2
2 It is given that \(\mathrm { f } ( n ) = 2 ^ { 3 n } + 8 ^ { n - 1 }\). By simplifying \(\mathrm { f } ( k ) + \mathrm { f } ( k + 1 )\), or otherwise, prove by mathematical induction that \(\mathrm { f } ( n )\) is divisible by 9 for every positive integer \(n\).
CAIE FP1 2018 June Q3
3 The curve \(C\) has polar equation \(r = \cos 2 \theta\), for \(- \frac { 1 } { 4 } \pi \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  1. Sketch \(C\).
  2. Find the area of the region enclosed by \(C\), showing full working.
  3. Find a cartesian equation of \(C\).
CAIE FP1 2018 June Q4
4 It is given that the equation $$x ^ { 3 } - 21 x ^ { 2 } + k x - 216 = 0$$ where \(k\) is a constant, has real roots \(a , a r\) and \(a r ^ { - 1 }\).
  1. Find the numerical values of the roots.
  2. Deduce the value of \(k\).
CAIE FP1 2018 June Q5
5 Let \(S _ { n } = \sum _ { r = 1 } ^ { n } ( - 1 ) ^ { r - 1 } r ^ { 2 }\).
  1. Use the standard result for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) given in the List of Formulae (MF10) to show that $$S _ { 2 n } = - n ( 2 n + 1 )$$
  2. State the value of \(\lim _ { n \rightarrow \infty } \frac { S _ { 2 n } } { n ^ { 2 } }\) and find \(\lim _ { n \rightarrow \infty } \frac { S _ { 2 n + 1 } } { n ^ { 2 } }\).
CAIE FP1 2018 June Q6
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + b } { x + b }$$ where \(b\) is a positive constant.
  1. Find the equations of the asymptotes of \(C\).
  2. Show that \(C\) does not intersect the \(x\)-axis.
  3. Justifying your answer, find the number of stationary points on \(C\).
  4. Sketch C. Your sketch should indicate the coordinates of any points of intersection with the \(y\)-axis. You do not need to find the coordinates of any stationary points.
CAIE FP1 2018 June Q7
7 Find the particular solution of the differential equation $$49 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 14 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 49 x + 735$$ given that when \(x = 0 , y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
CAIE FP1 2018 June Q8
8 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r c r } 1 & 2 & \alpha & - 1 \\ 2 & 6 & - 3 & - 3 \\ 3 & 10 & - 6 & - 5 \end{array} \right)$$ and \(\alpha\) is a constant. When \(\alpha \neq 0\) the null space of T is denoted by \(K _ { 1 }\).
  1. Find a basis for \(K _ { 1 }\).
    When \(\alpha = 0\) the null space of T is denoted by \(K _ { 2 }\).
  2. Find a basis for \(K _ { 2 }\).
  3. Determine, justifying your answer, whether \(K _ { 1 }\) is a subspace of \(K _ { 2 }\).
CAIE FP1 2018 June Q9
9
  1. Using the substitution \(u = \tan x\), or otherwise, find \(\int \sec ^ { 2 } x \tan ^ { 2 } x \mathrm {~d} x\).
    It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec ^ { n } x \tan ^ { 2 } x \mathrm {~d} x$$
  2. Using the result that \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sec x ) = \tan x \sec x\), show that, for \(n \geqslant 2\), $$( n + 1 ) I _ { n } = ( \sqrt { } 2 ) ^ { n - 2 } + ( n - 2 ) I _ { n - 2 }$$
  3. Hence find the mean value of \(\sec ^ { 4 } x \tan ^ { 2 } x\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\), giving your answer in exact form.
CAIE FP1 2018 June Q10
10 The line \(l _ { 1 }\) is parallel to the vector \(a \mathbf { i } - \mathbf { j } + \mathbf { k }\), where \(a\) is a constant, and passes through the point whose position vector is \(9 \mathbf { j } + 2 \mathbf { k }\). The line \(l _ { 2 }\) is parallel to the vector \(- a \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\) and passes through the point whose position vector is \(- 6 \mathbf { i } - 5 \mathbf { j } + 10 \mathbf { k }\).
  1. It is given that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
    (a) Show that \(a = - \frac { 6 } { 13 }\).
    (b) Find a cartesian equation of the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
  2. Given instead that the perpendicular distance between \(l _ { 1 }\) and \(l _ { 2 }\) is \(3 \sqrt { } ( 30 )\), find the value of \(a\).
CAIE FP1 2018 June Q11 EITHER
  1. Show that if \(z = \mathrm { e } ^ { \mathrm { i } \theta }\) and \(z \neq - 1\) then $$\frac { z - 1 } { z + 1 } = \mathrm { i } \tan \frac { 1 } { 2 } \theta$$
  2. Hence, or otherwise, show that if \(z\) is a cube root of unity then $$\frac { z ^ { 3 } - 1 } { z ^ { 3 } + 1 } + \frac { z ^ { 2 } - 1 } { z ^ { 2 } + 1 } + \frac { z - 1 } { z + 1 } = 0$$
  3. Hence write down three roots of the equation $$\left( z ^ { 3 } - 1 \right) \left( z ^ { 2 } + 1 \right) ( z + 1 ) + \left( z ^ { 2 } - 1 \right) \left( z ^ { 3 } + 1 \right) ( z + 1 ) + ( z - 1 ) \left( z ^ { 3 } + 1 \right) \left( z ^ { 2 } + 1 \right) = 0$$ and find the other three roots. Give your answers in an exact form.
CAIE FP1 2018 June Q11 OR
It is given that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\).
  1. Write down another eigenvector of \(\mathbf { A }\) corresponding to \(\lambda\).
  2. Write down an eigenvector and corresponding eigenvalue of \(\mathbf { A } ^ { n }\), where \(n\) is a positive integer.
    Let \(\mathbf { A } = \left( \begin{array} { l l l } 3 & 0 & 0 \\ 2 & 7 & 0 \\ 4 & 8 & 1 \end{array} \right)\).
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { n } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
  4. Determine the set of values of the real constant \(k\) such that $$\sum _ { n = 1 } ^ { \infty } k ^ { n } \left( \mathbf { A } ^ { n } - k \mathbf { A } ^ { n + 1 } \right) = k \mathbf { A } .$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2019 June Q1
1 A curve \(C\) has equation \(\cos y = x\), for \(- \pi < x < \pi\).
  1. Use implicit differentiation to show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \cot y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 }$$
  2. Hence find the exact value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(\left( \frac { 1 } { 2 } , \frac { 1 } { 3 } \pi \right)\) on \(C\).
CAIE FP1 2019 June Q2
2 Let \(u _ { n } = \frac { 4 \sin \left( n - \frac { 1 } { 2 } \right) \sin \frac { 1 } { 2 } } { \cos ( 2 n - 1 ) + \cos 1 }\).
  1. Using the formulae for \(\cos P \pm \cos Q\) given in the List of Formulae MF10, show that $$u _ { n } = \frac { 1 } { \cos n } - \frac { 1 } { \cos ( n - 1 ) }$$
  2. Use the method of differences to find \(\sum _ { n = 1 } ^ { N } u _ { n }\).
  3. Explain why the infinite series \(u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots\) does not converge.
CAIE FP1 2019 June Q3
3 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 6 \mathbf { i } + 2 \mathbf { j } + 7 \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } )\) and \(\mathbf { r } = 4 \mathbf { i } + 4 \mathbf { j } + \mu ( - 6 \mathbf { j } + \mathbf { k } )\) respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vectors of \(P\) and \(Q\).
CAIE FP1 2019 June Q4
4 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { x ^ { 3 } } \mathrm {~d} x$$
  1. Show that \(I _ { 2 } = \frac { 1 } { 3 } ( \mathrm { e } - 1 )\).
  2. Show that, for \(n \geqslant 3\), $$3 I _ { n } = \mathrm { e } - ( n - 2 ) I _ { n - 3 }$$
  3. Hence find the exact value of \(I _ { 8 }\).
CAIE FP1 2019 June Q5
5 A curve \(C\) is defined parametrically by $$x = \frac { 2 } { \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } } \quad \text { and } \quad y = \frac { \mathrm { e } ^ { t } - \mathrm { e } ^ { - t } } { \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } }$$ for \(0 \leqslant t \leqslant 1\). The area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(S\).
  1. Show that \(S = 4 \pi \int _ { 0 } ^ { 1 } \frac { \mathrm { e } ^ { t } - \mathrm { e } ^ { - t } } { \left( \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } \right) ^ { 2 } } \mathrm {~d} t\).
  2. Using the substitution \(u = \mathrm { e } ^ { t } + \mathrm { e } ^ { - t }\), or otherwise, find \(S\) in terms of \(\pi\) and e .
CAIE FP1 2019 June Q6
6 The equation $$x ^ { 3 } - x + 1 = 0$$ has roots \(\alpha , \beta , \gamma\).
  1. Use the relation \(x = y ^ { \frac { 1 } { 3 } }\) to show that the equation $$y ^ { 3 } + 3 y ^ { 2 } + 2 y + 1 = 0$$ has roots \(\alpha ^ { 3 } , \beta ^ { 3 } , \gamma ^ { 3 }\). Hence write down the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
    Let \(S _ { n } = \alpha ^ { n } + \beta ^ { n } + \gamma ^ { n }\).
  2. Find the value of \(S _ { - 3 }\).
  3. Show that \(S _ { 6 } = 5\) and find the value of \(S _ { 9 }\).
CAIE FP1 2019 June Q7
7 Find the particular solution of the differential equation $$10 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 3 \frac { \mathrm {~d} x } { \mathrm {~d} t } - x = t + 2$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
CAIE FP1 2019 June Q8
8
  1. Prove by mathematical induction that, for \(z \neq 1\) and all positive integers \(n\), $$1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 } = \frac { z ^ { n } - 1 } { z - 1 }$$
  2. By letting \(z = \frac { 1 } { 2 } ( \cos \theta + \mathrm { i } \sin \theta )\), use de Moivre's theorem to deduce that $$\sum _ { m = 1 } ^ { \infty } \left( \frac { 1 } { 2 } \right) ^ { m } \sin m \theta = \frac { 2 \sin \theta } { 5 - 4 \cos \theta }$$
CAIE FP1 2019 June Q9
9 It is given that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\).
  1. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\), with corresponding eigenvalue \(\lambda ^ { 2 }\).
    The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { c c c } n & 1 & 3 \\ 0 & 2 n & 0 \\ 0 & 0 & 3 n \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + n \mathbf { I } ) ^ { 2 }$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix and \(n\) is a non-zero integer.
  2. Find, in terms of \(n\), a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { B } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).