| Exam Board | CAIE |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2018 |
| Session | June |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Sequences and Series |
5 Let $S _ { n } = \sum _ { r = 1 } ^ { n } ( - 1 ) ^ { r - 1 } r ^ { 2 }$.\\
(i) Use the standard result for $\sum _ { r = 1 } ^ { n } r ^ { 2 }$ given in the List of Formulae (MF10) to show that
$$S _ { 2 n } = - n ( 2 n + 1 )$$
(ii) State the value of $\lim _ { n \rightarrow \infty } \frac { S _ { 2 n } } { n ^ { 2 } }$ and find $\lim _ { n \rightarrow \infty } \frac { S _ { 2 n + 1 } } { n ^ { 2 } }$.\\
\hfill \mbox{\textit{CAIE FP1 2018 Q5}}