| Exam Board | CAIE |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2019 |
| Session | June |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Implicit equations and differentiation |
1 A curve $C$ has equation $\cos y = x$, for $- \pi < x < \pi$.\\
(i) Use implicit differentiation to show that
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \cot y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 }$$
(ii) Hence find the exact value of $\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }$ at the point $\left( \frac { 1 } { 2 } , \frac { 1 } { 3 } \pi \right)$ on $C$.\\
\hfill \mbox{\textit{CAIE FP1 2019 Q1}}