CAIE FP1 2019 June — Question 1

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicImplicit equations and differentiation

1 A curve \(C\) has equation \(\cos y = x\), for \(- \pi < x < \pi\).
  1. Use implicit differentiation to show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \cot y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 }$$
  2. Hence find the exact value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(\left( \frac { 1 } { 2 } , \frac { 1 } { 3 } \pi \right)\) on \(C\).

1 A curve $C$ has equation $\cos y = x$, for $- \pi < x < \pi$.\\
(i) Use implicit differentiation to show that

$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \cot y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 }$$

(ii) Hence find the exact value of $\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }$ at the point $\left( \frac { 1 } { 2 } , \frac { 1 } { 3 } \pi \right)$ on $C$.\\

\hfill \mbox{\textit{CAIE FP1 2019 Q1}}