CAIE FP1 2017 June — Question 12 EITHER

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicVolumes of Revolution

The curve \(C\) has equation \(y = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) for \(0 \leqslant x \leqslant 4\).
  1. The region \(R\) is bounded by \(C\), the \(x\)-axis, the \(y\)-axis and the line \(x = 4\). Find, in terms of e, the coordinates of the centroid of the region \(R\).
  2. Show that \(\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\), where \(s\) denotes the arc length of \(C\), and find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.

The curve $C$ has equation $y = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)$ for $0 \leqslant x \leqslant 4$.\\
(i) The region $R$ is bounded by $C$, the $x$-axis, the $y$-axis and the line $x = 4$. Find, in terms of e, the coordinates of the centroid of the region $R$.\\

(ii) Show that $\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)$, where $s$ denotes the arc length of $C$, and find the surface area generated when $C$ is rotated through $2 \pi$ radians about the $x$-axis.\\

\hfill \mbox{\textit{CAIE FP1 2017 Q12 EITHER}}