CAIE FP1 2019 June — Question 7

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicSecond order differential equations

7 Find the particular solution of the differential equation $$10 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 3 \frac { \mathrm {~d} x } { \mathrm {~d} t } - x = t + 2$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).

7 Find the particular solution of the differential equation

$$10 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 3 \frac { \mathrm {~d} x } { \mathrm {~d} t } - x = t + 2$$

given that when $t = 0 , x = 0$ and $\frac { \mathrm { d } x } { \mathrm {~d} t } = 0$.\\

\hfill \mbox{\textit{CAIE FP1 2019 Q7}}