Questions — CAIE (7279 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP2 2014 November Q11 EITHER
\includegraphics[max width=\textwidth, alt={}]{699490ab-a01a-46e2-aa7c-3fd48c962c0c-5_595_522_477_810}
A uniform plane object consists of three identical circular rings, \(X , Y\) and \(Z\), enclosed in a larger circular ring \(W\). Each of the inner rings has mass \(m\) and radius \(r\). The outer ring has mass \(3 m\) and radius \(R\). The centres of the inner rings lie at the vertices of an equilateral triangle of side \(2 r\). The outer ring touches each of the inner rings and the rings are rigidly joined together. The fixed axis \(A B\) is the diameter of \(W\) that passes through the centre of \(X\) and the point of contact of \(Y\) and \(Z\) (see diagram). It is given that \(R = \left( 1 + \frac { 2 } { 3 } \sqrt { } 3 \right) r\).
  1. Show that the moment of inertia of the object about \(A B\) is \(( 7 + 2 \sqrt { } 3 ) m r ^ { 2 }\). The line \(C D\) is the diameter of \(W\) that is perpendicular to \(A B\). A particle of mass \(9 m\) is attached to \(D\). The object is now held with its plane horizontal. It is released from rest and rotates freely about the fixed horizontal axis \(A B\).
  2. Find, in terms of \(g\) and \(r\), the angular speed of the object when it has rotated through \(60 ^ { \circ }\).
CAIE FP2 2014 November Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{5d40f5b4-e3d4-482c-8d8d-05a01bd3b43f-2_312_409_525_868} A small smooth ball \(P\) is moving on a smooth horizontal plane with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It strikes a smooth vertical barrier at an angle \(\alpha\) (see diagram). The coefficient of restitution between \(P\) and the barrier is 0.4 . Given that the speed of \(P\) is halved as a result of the collision, find the value of \(\alpha\).
CAIE FP2 2014 November Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{5d40f5b4-e3d4-482c-8d8d-05a01bd3b43f-2_413_414_1155_863} A smooth cylinder of radius \(a\) is fixed with its axis horizontal. The point \(O\) is the centre of a circular cross-section of the cylinder. The line \(A O B\) is a diameter of this circular cross-section and the radius \(O A\) makes an angle \(\alpha\) with the upward vertical (see diagram). It is given that \(\cos \alpha = \frac { 3 } { 5 }\). A particle \(P\) of mass \(m\) moves on the inner surface of the cylinder in the plane of the cross-section. The particle passes through \(A\) with speed \(u\) along the surface in the downwards direction. The magnitude of the reaction between \(P\) and the inner surface of the sphere is \(R _ { A }\) when \(P\) is at \(A\), and is \(R _ { B }\) when \(P\) is at \(B\). It is given that \(R _ { B } = 10 R _ { A }\). Show that \(u ^ { 2 } = a g\). The particle loses contact with the surface of the cylinder when \(O P\) makes an angle \(\theta\) with the upward vertical. Find the value of \(\cos \theta\).
CAIE FP2 2014 November Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{5d40f5b4-e3d4-482c-8d8d-05a01bd3b43f-3_513_643_260_749} A uniform rod \(A B\), of length \(l\) and mass \(m\), rests in equilibrium with its lower end \(A\) on a rough horizontal floor and the end \(B\) against a smooth vertical wall. The rod is inclined to the horizontal at an angle \(\alpha\), where \(\tan \alpha = \frac { 3 } { 4 }\), and is in a vertical plane perpendicular to the wall. The rod is supported by a light spring \(C D\) which is in compression in a vertical line with its lower end \(D\) fixed on the floor. The upper end \(C\) is attached to the rod at a distance \(\frac { 1 } { 4 } l\) from \(B\) (see diagram). The coefficient of friction at \(A\) between the rod and the floor is \(\frac { 1 } { 3 }\) and the system is in limiting equilibrium.
  1. Show that the normal reaction of the floor at \(A\) has magnitude \(\frac { 1 } { 2 } m g\) and find the force in the spring.
  2. Given that the modulus of elasticity of the spring is \(2 m g\), find the natural length of the spring.
CAIE FP2 2014 November Q11 EITHER
\includegraphics[max width=\textwidth, alt={}]{5d40f5b4-e3d4-482c-8d8d-05a01bd3b43f-5_595_522_477_810}
A uniform plane object consists of three identical circular rings, \(X , Y\) and \(Z\), enclosed in a larger circular ring \(W\). Each of the inner rings has mass \(m\) and radius \(r\). The outer ring has mass \(3 m\) and radius \(R\). The centres of the inner rings lie at the vertices of an equilateral triangle of side \(2 r\). The outer ring touches each of the inner rings and the rings are rigidly joined together. The fixed axis \(A B\) is the diameter of \(W\) that passes through the centre of \(X\) and the point of contact of \(Y\) and \(Z\) (see diagram). It is given that \(R = \left( 1 + \frac { 2 } { 3 } \sqrt { } 3 \right) r\).
  1. Show that the moment of inertia of the object about \(A B\) is \(( 7 + 2 \sqrt { } 3 ) m r ^ { 2 }\). The line \(C D\) is the diameter of \(W\) that is perpendicular to \(A B\). A particle of mass \(9 m\) is attached to \(D\). The object is now held with its plane horizontal. It is released from rest and rotates freely about the fixed horizontal axis \(A B\).
  2. Find, in terms of \(g\) and \(r\), the angular speed of the object when it has rotated through \(60 ^ { \circ }\).
CAIE FP2 2015 November Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{13457d19-ee13-4f91-a22f-240c85068f48-2_744_504_255_824} A uniform ladder \(A B\), of length \(3 a\) and weight \(W\), rests with the end \(A\) in contact with smooth horizontal ground and the end \(B\) against a smooth vertical wall. One end of a light inextensible rope is attached to the ladder at the point \(C\), where \(A C = a\). The other end of the rope is fixed to the point \(D\) at the base of the wall and the rope \(D C\) is in the same vertical plane as the ladder \(A B\). The ladder rests in equilibrium in a vertical plane perpendicular to the wall, with the ladder making an angle \(\theta\) with the horizontal and the rope making an angle \(\alpha\) with the horizontal (see diagram). It is given that \(\tan \theta = 2 \tan \alpha\). Find, in terms of \(W\) and \(\alpha\), the tension in the rope and the magnitudes of the forces acting on the ladder at \(A\) and at \(B\).
CAIE FP2 2015 November Q2
2 A small uniform sphere \(A\), of mass \(2 m\), is moving with speed \(u\) on a smooth horizontal surface when it collides directly with a small uniform sphere \(B\), of mass \(m\), which is at rest. The spheres have equal radii and the coefficient of restitution between them is \(e\). Find expressions for the speeds of \(A\) and \(B\) immediately after the collision. Subsequently \(B\) collides with a vertical wall which is perpendicular to the direction of motion of \(B\). The coefficient of restitution between \(B\) and the wall is 0.4 . After \(B\) has collided with the wall, the speeds of \(A\) and \(B\) are equal. Find \(e\). Initially \(B\) is at a distance \(d\) from the wall. Find the distance of \(B\) from the wall when it next collides with \(A\).
\(3 A\) and \(B\) are two fixed points on a smooth horizontal surface, with \(A B = 3 a \mathrm {~m}\). One end of a light elastic string, of natural length \(a \mathrm {~m}\) and modulus of elasticity \(m g \mathrm {~N}\), is attached to the point \(A\). The other end of this string is attached to a particle \(P\) of mass \(m \mathrm {~kg}\). One end of a second light elastic string, of natural length \(k a m\) and modulus of elasticity \(2 m g \mathrm {~N}\), is attached to \(B\). The other end of this string is attached to \(P\). Given that the system is in equilibrium when \(P\) is at \(M\), the mid-point of \(A B\), find the value of \(k\). The particle \(P\) is released from rest at a point between \(A\) and \(B\) where both strings are taut. Show that \(P\) performs simple harmonic motion and state the period of the motion. In the case where \(P\) is released from rest at a distance \(0.2 a \mathrm {~m}\) from \(M\), the speed of \(P\) is \(0.7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when \(P\) is \(0.05 a \mathrm {~m}\) from \(M\). Find the value of \(a\).
CAIE FP2 2015 November Q4
4 A particle \(P\) of mass \(m\) is attached to one end of a light inextensible string of length \(a\). The other end of the string is attached to a fixed point \(O\). When \(P\) is hanging at rest vertically below \(O\), it is projected horizontally. In the subsequent motion \(P\) completes a vertical circle. The speed of \(P\) when it is at its highest point is \(u\). Show that the least possible value of \(u\) is \(\sqrt { } ( a g )\). It is now given that \(u = \sqrt { } ( \mathrm { ag } )\). When \(P\) passes through the lowest point of its path, it collides with, and coalesces with, a stationary particle of mass \(\frac { 1 } { 4 } m\). Find the speed of the combined particle immediately after the collision. In the subsequent motion, when \(O P\) makes an angle \(\theta\) with the upward vertical the tension in the string is \(T\). Find an expression for \(T\) in terms of \(m , g\) and \(\theta\). Find the value of \(\cos \theta\) when the string becomes slack.
CAIE FP2 2015 November Q5
5 A random sample of 10 observations of a normal variable \(X\) gave the following summarised data, where \(\bar { x }\) is the sample mean. $$\Sigma x = 222.8 \quad \Sigma ( x - \bar { x } ) ^ { 2 } = 4.12$$ Find a 95\% confidence interval for the population mean.
CAIE FP2 2015 November Q6
6 A biased coin is tossed repeatedly until a head is obtained. The random variable \(X\) denotes the number of tosses required for a head to be obtained. The mean of \(X\) is equal to twice the variance of \(X\). Show that the probability that a head is obtained when the coin is tossed once is \(\frac { 2 } { 3 }\). Find
  1. \(\mathrm { P } ( X = 4 )\),
  2. \(\mathrm { P } ( X > 4 )\),
  3. the least integer \(N\) such that \(\mathrm { P } ( X \leqslant N ) > 0.999\).
CAIE FP2 2015 November Q7
7 The continuous random variable \(X\) has probability density function given by $$\mathrm { f } ( x ) = \begin{cases} \frac { 1 } { 21 } x ^ { 2 } & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ The random variable \(Y\) is defined by \(Y = X ^ { 2 }\). Show that \(Y\) has probability density function given by $$\operatorname { g } ( y ) = \begin{cases} \frac { 1 } { 42 } y ^ { \frac { 1 } { 2 } } & 1 \leqslant y \leqslant 16
0 & \text { otherwise } \end{cases}$$ Find
  1. the median value of \(Y\),
  2. the expected value of \(Y\).
CAIE FP2 2015 November Q8
8 The number of goals scored by a certain football team was recorded for each of 100 matches, and the results are summarised in the following table.
Number of goals0123456 or more
Frequency121631251330
Fit a Poisson distribution to the data, and test its goodness of fit at the \(5 \%\) significance level.
CAIE FP2 2015 November Q9
9 A random sample of 8 students is chosen from those sitting examinations in both Mathematics and French. Their marks in Mathematics, \(x\), and in French, \(y\), are summarised as follows. $$\Sigma x = 472 \quad \Sigma x ^ { 2 } = 29950 \quad \Sigma y = 400 \quad \Sigma y ^ { 2 } = 21226 \quad \Sigma x y = 24879$$ Another student scored 72 marks in the Mathematics examination but was unable to sit the French examination. Estimate the mark that this student would have obtained in the French examination. Test, at the \(5 \%\) significance level, whether there is non-zero correlation between marks in Mathematics and marks in French.
CAIE FP2 2015 November Q10 EITHER
\includegraphics[max width=\textwidth, alt={}]{13457d19-ee13-4f91-a22f-240c85068f48-5_604_609_434_769}
An object is formed by attaching a thin uniform rod \(P Q\) to a uniform rectangular lamina \(A B C D\). The lamina has mass \(m\), and \(A B = D C = 6 a , B C = A D = 3 a\). The rod has mass \(M\) and length \(3 a\). The end \(P\) of the rod is attached to the mid-point of \(A B\). The rod is perpendicular to \(A B\) and in the plane of the lamina (see diagram). Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 1 }\), through \(Q\) and perpendicular to the plane of the lamina, is \(3 ( 8 m + M ) a ^ { 2 }\). Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 2 }\), through the mid-point of \(P Q\) and perpendicular to the plane of the lamina, is \(\frac { 3 } { 4 } ( 17 m + M ) a ^ { 2 }\). Find expressions for the periods of small oscillations of the object about the axes \(l _ { 1 }\) and \(l _ { 2 }\), and verify that these periods are equal when \(m = M\).
CAIE FP2 2015 November Q10 OR
A farmer \(A\) grows two types of potato plants, Royal and Majestic. A random sample of 10 Royal plants is taken and the potatoes from each plant are weighed. The total mass of potatoes on a plant is \(x \mathrm {~kg}\). The data are summarised as follows. $$\Sigma x = 42.0 \quad \Sigma x ^ { 2 } = 180.0$$ A random sample of 12 Majestic plants is taken. The total mass of potatoes on a plant is \(y \mathrm {~kg}\). The data are summarised as follows. $$\Sigma y = 57.6 \quad \Sigma y ^ { 2 } = 281.5$$ Test, at the \(5 \%\) significance level, whether the population mean mass of potatoes from Royal plants is the same as the population mean mass of potatoes from Majestic plants. You may assume that both distributions are normal and you should state any additional assumption that you make. A neighbouring farmer \(B\) grows Crown potato plants. His plants produce 3.8 kg of potatoes per plant, on average. Farmer \(A\) claims that her Royal plants produce a higher mean mass of potatoes than Farmer B's Crown plants. Test, at the \(5 \%\) significance level, whether Farmer A's claim is justified.
CAIE FP2 2015 November Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{27d3ee31-7c6e-4451-9c3d-aa4cfc0fdb22-2_744_504_255_824} A uniform ladder \(A B\), of length \(3 a\) and weight \(W\), rests with the end \(A\) in contact with smooth horizontal ground and the end \(B\) against a smooth vertical wall. One end of a light inextensible rope is attached to the ladder at the point \(C\), where \(A C = a\). The other end of the rope is fixed to the point \(D\) at the base of the wall and the rope \(D C\) is in the same vertical plane as the ladder \(A B\). The ladder rests in equilibrium in a vertical plane perpendicular to the wall, with the ladder making an angle \(\theta\) with the horizontal and the rope making an angle \(\alpha\) with the horizontal (see diagram). It is given that \(\tan \theta = 2 \tan \alpha\). Find, in terms of \(W\) and \(\alpha\), the tension in the rope and the magnitudes of the forces acting on the ladder at \(A\) and at \(B\).
CAIE FP2 2015 November Q8
8 The number of goals scored by a certain football team was recorded for each of 100 matches, and the results are summarised in the following table.
Number of goals0123456 or more
Frequency121631251330
Fit a Poisson distribution to the data, and test its goodness of fit at the 5\% significance level.
CAIE FP2 2015 November Q10 EITHER
\includegraphics[max width=\textwidth, alt={}]{27d3ee31-7c6e-4451-9c3d-aa4cfc0fdb22-5_604_609_434_769}
An object is formed by attaching a thin uniform rod \(P Q\) to a uniform rectangular lamina \(A B C D\). The lamina has mass \(m\), and \(A B = D C = 6 a , B C = A D = 3 a\). The rod has mass \(M\) and length \(3 a\). The end \(P\) of the rod is attached to the mid-point of \(A B\). The rod is perpendicular to \(A B\) and in the plane of the lamina (see diagram). Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 1 }\), through \(Q\) and perpendicular to the plane of the lamina, is \(3 ( 8 m + M ) a ^ { 2 }\). Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 2 }\), through the mid-point of \(P Q\) and perpendicular to the plane of the lamina, is \(\frac { 3 } { 4 } ( 17 m + M ) a ^ { 2 }\). Find expressions for the periods of small oscillations of the object about the axes \(l _ { 1 }\) and \(l _ { 2 }\), and verify that these periods are equal when \(m = M\).
CAIE FP2 2015 November Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{a8e37fb1-14c7-4004-b186-d607878e200d-2_744_504_255_824} A uniform ladder \(A B\), of length \(3 a\) and weight \(W\), rests with the end \(A\) in contact with smooth horizontal ground and the end \(B\) against a smooth vertical wall. One end of a light inextensible rope is attached to the ladder at the point \(C\), where \(A C = a\). The other end of the rope is fixed to the point \(D\) at the base of the wall and the rope \(D C\) is in the same vertical plane as the ladder \(A B\). The ladder rests in equilibrium in a vertical plane perpendicular to the wall, with the ladder making an angle \(\theta\) with the horizontal and the rope making an angle \(\alpha\) with the horizontal (see diagram). It is given that \(\tan \theta = 2 \tan \alpha\). Find, in terms of \(W\) and \(\alpha\), the tension in the rope and the magnitudes of the forces acting on the ladder at \(A\) and at \(B\).
CAIE FP2 2015 November Q7
7 The continuous random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 1 } { 21 } x ^ { 2 } & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ The random variable \(Y\) is defined by \(Y = X ^ { 2 }\). Show that \(Y\) has probability density function given by $$\operatorname { g } ( y ) = \begin{cases} \frac { 1 } { 42 } y ^ { \frac { 1 } { 2 } } & 1 \leqslant y \leqslant 16
0 & \text { otherwise } \end{cases}$$ Find
  1. the median value of \(Y\),
  2. the expected value of \(Y\).
CAIE FP2 2015 November Q10 EITHER
\includegraphics[max width=\textwidth, alt={}]{a8e37fb1-14c7-4004-b186-d607878e200d-5_604_609_434_769}
An object is formed by attaching a thin uniform rod \(P Q\) to a uniform rectangular lamina \(A B C D\). The lamina has mass \(m\), and \(A B = D C = 6 a , B C = A D = 3 a\). The rod has mass \(M\) and length \(3 a\). The end \(P\) of the rod is attached to the mid-point of \(A B\). The rod is perpendicular to \(A B\) and in the plane of the lamina (see diagram). Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 1 }\), through \(Q\) and perpendicular to the plane of the lamina, is \(3 ( 8 m + M ) a ^ { 2 }\). Show that the moment of inertia of the object about a smooth horizontal axis \(l _ { 2 }\), through the mid-point of \(P Q\) and perpendicular to the plane of the lamina, is \(\frac { 3 } { 4 } ( 17 m + M ) a ^ { 2 }\). Find expressions for the periods of small oscillations of the object about the axes \(l _ { 1 }\) and \(l _ { 2 }\), and verify that these periods are equal when \(m = M\).
CAIE FP2 2016 November Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{58728f93-bfdb-4f76-a9b9-3a1d1592bfc9-2_125_641_262_751} The point \(C\) is on the fixed line \(l\). Points \(A\) and \(B\) on \(l\) are such that \(A C = 4 \mathrm {~m}\) and \(C B = 2 \mathrm {~m}\), with \(C\) between \(A\) and \(B\). The point \(M\) is the mid-point of \(A B\) (see diagram). A particle \(P\) of mass \(m\) oscillates between \(A\) and \(B\) in simple harmonic motion. When \(P\) is at \(C\), its speed is \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find
  1. the magnitude of the maximum acceleration of \(P\),
  2. the number of complete oscillations made by \(P\) in one minute,
  3. the time that \(P\) takes to travel directly from \(A\) to \(C\).
CAIE FP2 2016 November Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{58728f93-bfdb-4f76-a9b9-3a1d1592bfc9-2_531_760_927_696} Two smooth vertical walls each with their base on a smooth horizontal surface intersect at an angle of \(60 ^ { \circ }\). A small smooth sphere \(P\) is moving on the horizontal surface with speed \(u\) when it collides with the first vertical wall at the point \(D\). The angle between the direction of motion of \(P\) and the wall is \(\alpha ^ { \circ }\) before the collision and \(75 ^ { \circ }\) after the collision. The speed of \(P\) after this collision is \(v\) and the coefficient of restitution between \(P\) and the first wall is \(e\). Sphere \(P\) then collides with the second vertical wall at the point \(E\). The speed of \(P\) after this second collision is \(\frac { 1 } { 4 } u\) (see diagram). The coefficient of restitution between \(P\) and the second wall is \(\frac { 3 } { 4 }\).
  1. By considering the collision at \(E\), show that \(v = \frac { \sqrt { } 2 } { 5 } u\).
  2. Find the value of \(\alpha\) and the value of \(e\).
CAIE FP2 2016 November Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{58728f93-bfdb-4f76-a9b9-3a1d1592bfc9-3_898_1116_258_518} The end \(P\) of a uniform rod \(P Q\), of weight \(k W\) and length \(8 a\), is rigidly attached to a point on the surface of a uniform sphere with centre \(C\), weight \(W\) and radius \(a\). The end \(Q\) is rigidly attached to a point on the surface of an identical sphere with centre \(D\). The points \(C , P , Q\) and \(D\) are in a straight line. The object consisting of the rod and two spheres rests with one sphere in contact with a rough horizontal surface, at the point \(A\), and the other sphere in contact with a smooth vertical wall, at the point \(B\). The angle between \(C D\) and the horizontal is \(\theta\). The point \(B\) is at a height of \(7 a\) above the base of the wall (see diagram). The points \(A , B , C , D , P\) and \(Q\) are all in the same vertical plane.
  1. Show that \(\sin \theta = \frac { 3 } { 5 }\). The object is in limiting equilibrium and the coefficient of friction at \(A\) is \(\mu\).
  2. Find the numerical value of \(\mu\).
  3. Given that the resultant force on the object at \(A\) is \(W \sqrt { } ( 65 )\), show that \(k = 5\).
CAIE FP2 2016 November Q4
4 A particle \(P\) of mass \(m\) is attached to one end of a light inextensible string of length \(a\). The other end of the string is attached to a fixed point \(O\). The particle is held vertically above \(O\) with the string taut and then projected horizontally with speed \(\sqrt { } \left( \frac { 13 } { 3 } a g \right)\). It begins to move in a vertical circle with centre \(O\). When \(P\) is at its lowest point, it collides with a stationary particle of mass \(\lambda m\). The two particles coalesce.
  1. Show that the speed of the combined particle immediately after the impact is \(\frac { 5 } { \lambda + 1 } \sqrt { } \left( \frac { 1 } { 3 } a g \right)\). In the subsequent motion, the string becomes slack when the combined particle is at a height of \(\frac { 1 } { 3 } a\) above the level of \(O\).
  2. Find the value of \(\lambda\).
  3. Find, in terms of \(m\) and \(g\), the instantaneous change in the tension in the string as a result of the collision.