1
\includegraphics[max width=\textwidth, alt={}, center]{58728f93-bfdb-4f76-a9b9-3a1d1592bfc9-2_125_641_262_751}
The point \(C\) is on the fixed line \(l\). Points \(A\) and \(B\) on \(l\) are such that \(A C = 4 \mathrm {~m}\) and \(C B = 2 \mathrm {~m}\), with \(C\) between \(A\) and \(B\). The point \(M\) is the mid-point of \(A B\) (see diagram). A particle \(P\) of mass \(m\) oscillates between \(A\) and \(B\) in simple harmonic motion. When \(P\) is at \(C\), its speed is \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find
- the magnitude of the maximum acceleration of \(P\),
- the number of complete oscillations made by \(P\) in one minute,
- the time that \(P\) takes to travel directly from \(A\) to \(C\).