6 Two vectors \(\mathbf { u }\) and \(\mathbf { v }\) are such that \(\mathbf { u } = \left( \begin{array} { c } p ^ { 2 }
- 2
6 \end{array} \right)\) and \(\mathbf { v } = \left( \begin{array} { c } 2
p - 1
2 p + 1 \end{array} \right)\), where \(p\) is a constant.
- Find the values of \(p\) for which \(\mathbf { u }\) is perpendicular to \(\mathbf { v }\).
- For the case where \(p = 1\), find the angle between the directions of \(\mathbf { u }\) and \(\mathbf { v }\).