CAIE P1 2012 June — Question 11

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2012
SessionJune
TopicVolumes of Revolution

11
\includegraphics[max width=\textwidth, alt={}, center]{4d8fcc3d-a2da-4d98-8500-075d10847be3-4_636_951_255_596} The diagram shows the line \(y = 1\) and part of the curve \(y = \frac { 2 } { \sqrt { } ( x + 1 ) }\).
  1. Show that the equation \(y = \frac { 2 } { \sqrt { } ( x + 1 ) }\) can be written in the form \(x = \frac { 4 } { y ^ { 2 } } - 1\).
  2. Find \(\int \left( \frac { 4 } { y ^ { 2 } } - 1 \right) \mathrm { d } y\). Hence find the area of the shaded region.
  3. The shaded region is rotated through \(360 ^ { \circ }\) about the \(\boldsymbol { y }\)-axis. Find the exact value of the volume of revolution obtained.