Questions — CAIE P2 (699 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE P2 2021 June Q3
3 Solve the equation \(\sin \left( 2 \theta + 30 ^ { \circ } \right) = 5 \cos \left( 2 \theta + 60 ^ { \circ } \right)\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P2 2021 June Q4
4
  1. Find the exact value of \(\int _ { 0 } ^ { 2 } 6 \mathrm { e } ^ { 2 x + 1 } \mathrm {~d} x\).
  2. Find \(\int \left( \tan ^ { 2 } x + 4 \sin ^ { 2 } 2 x \right) \mathrm { d } x\).
CAIE P2 2021 June Q5
5
  1. Find the quotient when \(x ^ { 4 } - 32 x + 55\) is divided by \(( x - 2 ) ^ { 2 }\) and show that the remainder is 7 .
  2. Factorise \(x ^ { 4 } - 32 x + 48\).
  3. Hence solve the equation \(\mathrm { e } ^ { - 12 y } - 32 \mathrm { e } ^ { - 3 y } + 48 = 0\), giving your answer in an exact form.
CAIE P2 2021 June Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{388d7076-636c-417d-84cb-e6e2a3e9a6a0-08_451_1086_260_525} The diagram shows the curve with equation $$y = ( \ln x ) ^ { 2 } - 2 \ln x$$ The curve crosses the \(x\)-axis at the points \(A\) and \(B\), and has a minimum point \(M\).
  1. Find the exact value of the gradient of the curve at each of the points \(A\) and \(B\).
  2. Find the exact \(x\)-coordinate of \(M\).
CAIE P2 2021 June Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{388d7076-636c-417d-84cb-e6e2a3e9a6a0-10_465_785_260_680} The diagram shows the curve with parametric equations $$x = 4 t + \mathrm { e } ^ { 2 t } , \quad y = 6 t \sin 2 t$$ for \(0 \leqslant t \leqslant 1\). The point \(P\) on the curve has parameter \(p\) and \(y\)-coordinate 3 .
  1. Show that \(p = \frac { 1 } { 2 \sin 2 p }\).
  2. Show by calculation that the value of \(p\) lies between 0.5 and 0.6 .
  3. Use an iterative formula, based on the equation in part (a), to find the value of \(p\) correct to 3 significant figures. Use an initial value of 0.55 and give the result of each iteration to 5 significant figures.
  4. Find the gradient of the curve at \(P\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2021 June Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{61df367d-741f-4906-8ab9-2f32e8711aa6-08_451_1086_260_525} The diagram shows the curve with equation $$y = ( \ln x ) ^ { 2 } - 2 \ln x$$ The curve crosses the \(x\)-axis at the points \(A\) and \(B\), and has a minimum point \(M\).
  1. Find the exact value of the gradient of the curve at each of the points \(A\) and \(B\).
  2. Find the exact \(x\)-coordinate of \(M\).
CAIE P2 2021 June Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{61df367d-741f-4906-8ab9-2f32e8711aa6-10_465_785_260_680} The diagram shows the curve with parametric equations $$x = 4 t + \mathrm { e } ^ { 2 t } , \quad y = 6 t \sin 2 t$$ for \(0 \leqslant t \leqslant 1\). The point \(P\) on the curve has parameter \(p\) and \(y\)-coordinate 3 .
  1. Show that \(p = \frac { 1 } { 2 \sin 2 p }\).
  2. Show by calculation that the value of \(p\) lies between 0.5 and 0.6 .
  3. Use an iterative formula, based on the equation in part (a), to find the value of \(p\) correct to 3 significant figures. Use an initial value of 0.55 and give the result of each iteration to 5 significant figures.
  4. Find the gradient of the curve at \(P\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2022 June Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{ed12a4fb-e3bf-4d00-ad09-9ba5be941dd5-02_654_396_258_872} The variables \(x\) and \(y\) satisfy the equation \(y = 4 ^ { 2 x - a }\), where \(a\) is an integer. As shown in the diagram, the graph of \(\ln y\) against \(x\) is a straight line passing through the point \(( 0 , - 20.8 )\), where the second coordinate is given correct to 3 significant figures.
  1. Show that the gradient of the straight line is \(\ln 16\).
  2. Determine the value of \(a\).
CAIE P2 2022 June Q2
2
  1. Express the equation \(7 \tan \theta + 4 \cot \theta - 13 \sec \theta = 0\) in terms of \(\sin \theta\) only.
  2. Hence solve the equation \(7 \tan \theta + 4 \cot \theta - 13 \sec \theta = 0\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
CAIE P2 2022 June Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{ed12a4fb-e3bf-4d00-ad09-9ba5be941dd5-04_531_739_258_703} The diagram shows the curve with equation \(y = 3 \sin x - 3 \sin 2 x\) for \(0 \leqslant x \leqslant \pi\). The curve meets the \(x\)-axis at the origin and at the points with \(x\)-coordinates \(a\) and \(\pi\).
  1. Find the exact value of \(a\).
  2. Find the area of the shaded region.
CAIE P2 2022 June Q4
4 A curve has equation \(x ^ { 2 } y + 2 y ^ { 3 } = 48\).
Find the equation of the normal to the curve at the point ( 4,2 ), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.
CAIE P2 2022 June Q5
5
  1. By sketching the graphs of $$y = | 5 - 2 x | \quad \text { and } \quad y = 3 \ln x$$ on the same diagram, show that the equation \(| 5 - 2 x | = 3 \ln x\) has exactly two roots.
  2. Show that the value of the larger root satisfies the equation \(x = 2.5 + 1.5 \ln x\).
  3. Show by calculation that the value of the larger root lies between 4.5 and 5.0.
  4. Use an iterative formula, based on the equation in part (b), to find the value of the larger root correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
CAIE P2 2022 June Q6
6 A curve has equation \(y = \frac { 9 \mathrm { e } ^ { 2 x } + 16 } { \mathrm { e } ^ { x } - 1 }\).
  1. Show that the \(x\)-coordinate of any stationary point on the curve satisfies the equation $$\mathrm { e } ^ { x } \left( 3 \mathrm { e } ^ { x } - 8 \right) \left( 3 \mathrm { e } ^ { x } + 2 \right) = 0$$
  2. Hence show that the curve has only one stationary point and find its exact coordinates.
CAIE P2 2022 June Q7
7 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = 2 x ^ { 3 } + 5 x ^ { 2 } + a x + 2 a$$ where \(a\) is an integer.
  1. Find, in terms of \(x\) and \(a\), the quotient when \(\mathrm { p } ( x )\) is divided by ( \(x + 2\) ), and show that the remainder is 4 .
  2. It is given that \(\int _ { - 1 } ^ { 1 } \frac { \mathrm { p } ( x ) } { x + 2 } \mathrm {~d} x = \frac { 22 } { 3 } + \ln b\), where \(b\) is an integer. Find the values of \(a\) and \(b\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2022 June Q1
1 Given that \(y = \frac { \ln x } { x ^ { 2 } }\), find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(x = \mathrm { e }\).
CAIE P2 2022 June Q2
2
  1. Sketch, on the same diagram, the graphs of \(y = | 2 x - 9 |\) and \(y = 5 x - 3\).
  2. Solve the equation \(| 2 x - 9 | = 5 x - 3\).
CAIE P2 2022 June Q3
3 A curve has equation \(\mathrm { e } ^ { 2 x } \cos 2 y + \sin y = 1\).
Find the exact gradient of the curve at the point \(\left( 0 , \frac { 1 } { 6 } \pi \right)\).
CAIE P2 2022 June Q4
4
  1. Use the trapezium rule with three intervals to show that the value of \(\int _ { 1 } ^ { 4 } \ln x \mathrm {~d} x\) is approximately \(\ln 12\).
  2. Use a graph of \(y = \ln x\) to show that \(\ln 12\) is an under-estimate of the true value of \(\int _ { 1 } ^ { 4 } \ln x \mathrm {~d} x\).
CAIE P2 2022 June Q5
5 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = 2 x ^ { 3 } + a x ^ { 2 } - 3 x - 4$$ where \(a\) is a constant. It is given that ( \(x - 4\) ) is a factor of \(\mathrm { p } ( x )\).
  1. Find the value of \(a\) and hence factorise \(\mathrm { p } ( x )\).
  2. Show that the equation \(\mathrm { p } \left( \mathrm { e } ^ { 3 y } \right) = 0\) has only one real root and find its exact value.
CAIE P2 2022 June Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{1b9c6b41-69dd-4132-92c7-9507cbd741dd-08_542_661_269_731} The diagram shows the curve \(y = 3 \mathrm { e } ^ { 2 x - 1 }\). The shaded region is bounded by the curve and the lines \(x = a , x = a + 1\) and \(y = 0\), where \(a\) is a constant. It is given that the area of the shaded region is 120 square units.
  1. Show that \(a = \frac { 1 } { 2 } \ln \left( 80 + \mathrm { e } ^ { 2 a - 1 } \right) - \frac { 1 } { 2 }\).
  2. Use an iterative formula, based on the equation in part (a), to find the value of \(a\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
CAIE P2 2022 June Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{1b9c6b41-69dd-4132-92c7-9507cbd741dd-10_551_657_274_735} The diagram shows the curves \(y = \sqrt { 2 \pi - 2 x }\) and \(y = \sin ^ { 2 } x\) for \(0 \leqslant x \leqslant \pi\). The shaded region is bounded by the two curves and the line \(x = 0\). Find the exact area of the shaded region.
CAIE P2 2022 June Q8
8
  1. Express \(3 \sin 2 \theta \sec \theta + 10 \cos \left( \theta - 30 ^ { \circ } \right)\) in the form \(R \sin ( \theta + \alpha )\) where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation \(3 \sin 4 \beta \sec 2 \beta + 10 \cos \left( 2 \beta - 30 ^ { \circ } \right) = 2\) for \(0 ^ { \circ } < \beta < 90 ^ { \circ }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2022 June Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{712be8e6-e1e9-4662-b1f1-51c39c2c9df1-08_542_661_269_731} The diagram shows the curve \(y = 3 \mathrm { e } ^ { 2 x - 1 }\). The shaded region is bounded by the curve and the lines \(x = a , x = a + 1\) and \(y = 0\), where \(a\) is a constant. It is given that the area of the shaded region is 120 square units.
  1. Show that \(a = \frac { 1 } { 2 } \ln \left( 80 + \mathrm { e } ^ { 2 a - 1 } \right) - \frac { 1 } { 2 }\).
  2. Use an iterative formula, based on the equation in part (a), to find the value of \(a\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
CAIE P2 2022 June Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{712be8e6-e1e9-4662-b1f1-51c39c2c9df1-10_551_657_274_735} The diagram shows the curves \(y = \sqrt { 2 \pi - 2 x }\) and \(y = \sin ^ { 2 } x\) for \(0 \leqslant x \leqslant \pi\). The shaded region is bounded by the two curves and the line \(x = 0\). Find the exact area of the shaded region.
CAIE P2 2023 June Q1
1 Use logarithms to solve the equation \(12 ^ { x } = 3 ^ { 2 x + 1 }\). Give your answer correct to 3 significant figures.