Questions — CAIE FP2 (474 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP2 2016 November Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{62d0d8cb-8f8c-4298-9705-71a735a9a4e7-3_898_1116_258_518} The end \(P\) of a uniform rod \(P Q\), of weight \(k W\) and length \(8 a\), is rigidly attached to a point on the surface of a uniform sphere with centre \(C\), weight \(W\) and radius \(a\). The end \(Q\) is rigidly attached to a point on the surface of an identical sphere with centre \(D\). The points \(C , P , Q\) and \(D\) are in a straight line. The object consisting of the rod and two spheres rests with one sphere in contact with a rough horizontal surface, at the point \(A\), and the other sphere in contact with a smooth vertical wall, at the point \(B\). The angle between \(C D\) and the horizontal is \(\theta\). The point \(B\) is at a height of \(7 a\) above the base of the wall (see diagram). The points \(A , B , C , D , P\) and \(Q\) are all in the same vertical plane.
  1. Show that \(\sin \theta = \frac { 3 } { 5 }\). The object is in limiting equilibrium and the coefficient of friction at \(A\) is \(\mu\).
  2. Find the numerical value of \(\mu\).
  3. Given that the resultant force on the object at \(A\) is \(W \sqrt { } ( 65 )\), show that \(k = 5\).
CAIE FP2 2016 November Q10 EITHER
\includegraphics[max width=\textwidth, alt={}]{62d0d8cb-8f8c-4298-9705-71a735a9a4e7-6_515_625_411_758}
A thin uniform rod \(A B\) has mass \(2 m\) and length \(3 a\). Two identical uniform discs each have mass \(\frac { 1 } { 2 } m\) and radius \(a\). The centre of one of the discs is rigidly attached to the end \(A\) of the rod and the centre of the other disc is rigidly attached to the end \(B\) of the rod. The plane of each disc is perpendicular to the rod \(A B\). A second thin uniform rod \(O C\) has mass \(m\) and length \(2 a\). The end \(C\) of this rod is rigidly attached to the mid-point of \(A B\), with \(O C\) perpendicular to \(A B\) (see diagram). The object consisting of the two discs and two rods is free to rotate about a horizontal axis \(l\), through \(O\), which is perpendicular to both rods.
  1. Show that the moment of inertia of one of the discs about \(l\) is \(\frac { 13 } { 4 } m a ^ { 2 }\).
  2. Show that the moment of inertia of the object about \(l\) is \(\frac { 52 } { 3 } m a ^ { 2 }\). When the object is suspended from \(O\) and is hanging in equilibrium, the point \(C\) is given a speed of \(\sqrt { } ( 2 a g )\) in the direction parallel to \(A B\). In the subsequent motion, the angle through which \(O C\) has turned before the object comes to instantaneous rest is \(\theta\).
  3. Show that \(\cos \theta = \frac { 8 } { 21 }\).
CAIE FP2 2016 November Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{184020e1-7ff2-4172-8d33-baff963afa76-2_125_641_262_751} The point \(C\) is on the fixed line \(l\). Points \(A\) and \(B\) on \(l\) are such that \(A C = 4 \mathrm {~m}\) and \(C B = 2 \mathrm {~m}\), with \(C\) between \(A\) and \(B\). The point \(M\) is the mid-point of \(A B\) (see diagram). A particle \(P\) of mass \(m\) oscillates between \(A\) and \(B\) in simple harmonic motion. When \(P\) is at \(C\), its speed is \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find
  1. the magnitude of the maximum acceleration of \(P\),
  2. the number of complete oscillations made by \(P\) in one minute,
  3. the time that \(P\) takes to travel directly from \(A\) to \(C\).
CAIE FP2 2016 November Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{184020e1-7ff2-4172-8d33-baff963afa76-2_531_760_927_696} Two smooth vertical walls each with their base on a smooth horizontal surface intersect at an angle of \(60 ^ { \circ }\). A small smooth sphere \(P\) is moving on the horizontal surface with speed \(u\) when it collides with the first vertical wall at the point \(D\). The angle between the direction of motion of \(P\) and the wall is \(\alpha ^ { \circ }\) before the collision and \(75 ^ { \circ }\) after the collision. The speed of \(P\) after this collision is \(v\) and the coefficient of restitution between \(P\) and the first wall is \(e\). Sphere \(P\) then collides with the second vertical wall at the point \(E\). The speed of \(P\) after this second collision is \(\frac { 1 } { 4 } u\) (see diagram). The coefficient of restitution between \(P\) and the second wall is \(\frac { 3 } { 4 }\).
  1. By considering the collision at \(E\), show that \(v = \frac { \sqrt { } 2 } { 5 } u\).
  2. Find the value of \(\alpha\) and the value of \(e\).
CAIE FP2 2016 November Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{184020e1-7ff2-4172-8d33-baff963afa76-3_898_1116_258_518} The end \(P\) of a uniform rod \(P Q\), of weight \(k W\) and length \(8 a\), is rigidly attached to a point on the surface of a uniform sphere with centre \(C\), weight \(W\) and radius \(a\). The end \(Q\) is rigidly attached to a point on the surface of an identical sphere with centre \(D\). The points \(C , P , Q\) and \(D\) are in a straight line. The object consisting of the rod and two spheres rests with one sphere in contact with a rough horizontal surface, at the point \(A\), and the other sphere in contact with a smooth vertical wall, at the point \(B\). The angle between \(C D\) and the horizontal is \(\theta\). The point \(B\) is at a height of \(7 a\) above the base of the wall (see diagram). The points \(A , B , C , D , P\) and \(Q\) are all in the same vertical plane.
  1. Show that \(\sin \theta = \frac { 3 } { 5 }\). The object is in limiting equilibrium and the coefficient of friction at \(A\) is \(\mu\).
  2. Find the numerical value of \(\mu\).
  3. Given that the resultant force on the object at \(A\) is \(W \sqrt { } ( 65 )\), show that \(k = 5\).
CAIE FP2 2016 November Q10 EITHER
\includegraphics[max width=\textwidth, alt={}]{184020e1-7ff2-4172-8d33-baff963afa76-6_515_625_411_758}
A thin uniform rod \(A B\) has mass \(2 m\) and length \(3 a\). Two identical uniform discs each have mass \(\frac { 1 } { 2 } m\) and radius \(a\). The centre of one of the discs is rigidly attached to the end \(A\) of the rod and the centre of the other disc is rigidly attached to the end \(B\) of the rod. The plane of each disc is perpendicular to the rod \(A B\). A second thin uniform rod \(O C\) has mass \(m\) and length \(2 a\). The end \(C\) of this rod is rigidly attached to the mid-point of \(A B\), with \(O C\) perpendicular to \(A B\) (see diagram). The object consisting of the two discs and two rods is free to rotate about a horizontal axis \(l\), through \(O\), which is perpendicular to both rods.
  1. Show that the moment of inertia of one of the discs about \(l\) is \(\frac { 13 } { 4 } m a ^ { 2 }\).
  2. Show that the moment of inertia of the object about \(l\) is \(\frac { 52 } { 3 } m a ^ { 2 }\). When the object is suspended from \(O\) and is hanging in equilibrium, the point \(C\) is given a speed of \(\sqrt { } ( 2 a g )\) in the direction parallel to \(A B\). In the subsequent motion, the angle through which \(O C\) has turned before the object comes to instantaneous rest is \(\theta\).
  3. Show that \(\cos \theta = \frac { 8 } { 21 }\).
CAIE FP2 2017 November Q1
1 A particle \(P\) is moving in a circle of radius 0.8 m . At time \(t \mathrm {~s}\) its velocity is \(\left( 8 - p t + t ^ { 2 } \right) \mathrm { m } \mathrm { s } ^ { - 1 }\), where \(p\) is a constant. The magnitude of the transverse component of the acceleration of \(P\) when \(t = 2\) is zero. Find the magnitude of the radial component of the acceleration of \(P\) when \(t = 2\).
CAIE FP2 2017 November Q2
2 The piston in a large engine rises and falls in simple harmonic motion. When the piston is 1.6 m below its highest level, the rate of change of its height is \(\frac { 3 } { 5 } \pi\) metres per second. When the piston is 0.2 m below its highest level, the rate of change of its height is \(\frac { 1 } { 4 } \pi\) metres per second. Find the amplitude and period of the motion.
CAIE FP2 2017 November Q3
3 Three uniform small smooth spheres \(A , B\) and \(C\) have equal radii and masses \(m , k m\) and \(m\) respectively, where \(k\) is a constant. The spheres are moving in the same direction along a straight line on a smooth horizontal surface, with \(B\) between \(A\) and \(C\). The speeds of \(A , B\) and \(C\) are \(2 u , u\) and \(\frac { 4 } { 3 } u\) respectively. The coefficient of restitution between any pair of the spheres is \(\frac { 1 } { 2 }\). After sphere \(A\) has collided with sphere \(B\), sphere \(B\) collides with sphere \(C\).
  1. Find an inequality satisfied by \(k\).
  2. Given that \(k = 2\), show that after \(B\) has collided with \(C\) there are no further collisions between any of the three spheres.
CAIE FP2 2017 November Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{9b520e69-a14e-47e5-97d7-998f5145844b-06_465_663_262_742} A small ring \(P\) of weight \(W\) is free to slide on a rough horizontal wire, one end of which is attached to a vertical wall at \(Q\). The end \(A\) of a thin uniform \(\operatorname { rod } A B\) of length \(2 a\) and weight \(\frac { 5 } { 2 } W\) is freely hinged to the wall at the point \(A\) which is a distance \(a\) vertically below \(Q\). A light elastic string of natural length \(2 a\) has one end attached to the ring \(P\) and the other end attached to the rod at \(B\). The string is at right angles to the rod and \(A , B , P\) and \(Q\) lie in a vertical plane. The system is in limiting equilibrium with \(A B\) making an angle \(\theta\) with the horizontal, where \(\sin \theta = \frac { 3 } { 5 }\) (see diagram).
  1. Find the tension in the string in terms of \(W\).
  2. Find the coefficient of friction between the ring and the wire.
  3. Find the magnitude of the resultant force on the rod at the hinge in terms of \(W\).
  4. Find the modulus of elasticity of the string in terms of \(W\).
    \includegraphics[max width=\textwidth, alt={}, center]{9b520e69-a14e-47e5-97d7-998f5145844b-08_862_698_260_721} A uniform picture frame of mass \(m\) is made by removing a rectangular lamina \(E F G H\) in which \(E F = 4 a\) and \(F G = 2 a\) from a larger rectangular lamina \(A B C D\) in which \(A B = 6 a\) and \(B C = 4 a\). The side \(E F\) is parallel to the side \(A B\). The point of intersection of the diagonals \(A C\) and \(B D\) coincides with the point of intersection of the diagonals \(E G\) and \(F H\). One end of a light inextensible string of length \(10 a\) is attached to \(A\) and the other end is attached to \(B\). The frame is suspended from the mid-point \(O\) of the string. A small object of mass \(\frac { 11 } { 12 } m\) is fixed to the mid-point of \(A B\) (see diagram).
CAIE FP2 2017 November Q6
6 A pair of fair dice is thrown repeatedly until a pair of sixes is obtained. The number of throws taken is denoted by the random variable \(X\).
  1. Find the mean value of \(X\).
  2. Find the probability that exactly 12 throws are required to obtain a pair of sixes.
  3. Find the probability that more than 12 throws are required to obtain a pair of sixes.
CAIE FP2 2017 November Q7
7 The random variable \(X\) has probability density function f given by $$\mathrm { f } ( x ) = \begin{cases} 0.2 \mathrm { e } ^ { - 0.2 x } & x \geqslant 0
0 & \text { otherwise } \end{cases}$$
  1. Find the distribution function of \(X\).
  2. Find \(\mathrm { P } ( X > 2 )\).
  3. Find the median of \(X\).
CAIE FP2 2017 November Q8
8 Members of a Statistics club are voting to elect a new president of the club. Members must choose to vote either by post or by text or by email. The method of voting chosen by a random sample of 60 male members and 40 female members is given in the following table.
\cline { 3 - 5 } \multicolumn{2}{c|}{}Method of voting
\cline { 3 - 5 } \multicolumn{2}{c|}{}PostTextEmail
\multirow{2}{*}{Gender}Male101238
\cline { 2 - 5 }Female52114
Test, at the \(1 \%\) significance level, whether there is an association between method of voting and gender.
CAIE FP2 2017 November Q9
9 The land areas \(x\) (in suitable units) and populations \(y\) (in millions) for a sample of 8 randomly chosen cities are given in the following table.
Land area \(( x )\)1.04.52.41.63.88.67.56.5
Population \(( y )\)0.88.44.21.62.210.24.25.2
$$\left[ \Sigma x = 35.9 , \Sigma x ^ { 2 } = 216.47 , \Sigma y = 36.8 , \Sigma y ^ { 2 } = 244.96 , \Sigma x y = 212.62 . \right]$$
  1. Find, showing all necessary working, the value of the product moment correlation coefficient for this sample.
  2. Using a \(1 \%\) significance level, test whether there is positive correlation between land area and population of cities.
    The land areas and populations for another randomly chosen sample of cities, this time of size \(n\), give a product moment correlation coefficient of 0.651 . Using a test at the \(1 \%\) significance level, there is evidence of non-zero correlation between the variables.
  3. Find the least possible value of \(n\), justifying your answer.
CAIE FP2 2017 November Q10
10 A factory produces bottles of an energy juice. Two different machines are used to fill empty bottles with the juice. The manager chooses a random sample of 50 bottles filled by machine \(X\) and a random sample of 60 bottles filled by machine \(Y\). The volumes of juice, \(x\) and \(y\) respectively, measured in appropriate units, are summarised by $$\Sigma x = 45.5 , \quad \Sigma ( x - \bar { x } ) ^ { 2 } = 19.56 , \quad \Sigma y = 72.3 , \quad \Sigma ( y - \bar { y } ) ^ { 2 } = 30.25$$ where \(\bar { x }\) and \(\bar { y }\) are the sample means of the volume of juice in the bottles filled by \(X\) and \(Y\) respectively.
  1. Find a 90\% confidence interval for the difference between the mean volume of juice in bottles filled by machine \(X\) and the mean volume of juice in bottles filled by machine \(Y\).
    A test at the \(\alpha \%\) significance level does not provide evidence that there is any difference in the means of the volume of juice in bottles filled by machine \(X\) and the volume of juice in bottles filled by machine \(Y\).
  2. Find the set of possible values of \(\alpha\).
CAIE FP2 2017 November Q11 EITHER
\includegraphics[max width=\textwidth, alt={}]{9b520e69-a14e-47e5-97d7-998f5145844b-18_552_588_438_776}
A particle \(P\) of mass \(m\) is free to move on the smooth inner surface of a fixed hollow sphere of radius \(a\). The centre of the sphere is \(O\). The points \(A\) and \(A ^ { \prime }\) are on the inner surface of the sphere, on opposite sides of the vertical through \(O\); the radius \(O A\) makes an angle \(\alpha\) with the downward vertical and the radius \(O A ^ { \prime }\) makes an angle \(\beta\) with the upward vertical. The point \(B\) is on the inner surface of the sphere, vertically below \(O\). The point \(B ^ { \prime }\) is on the inner surface of the sphere and such that \(O B ^ { \prime }\) makes an angle \(2 \beta\) with the upward vertical through \(O\) (see diagram). It is given that \(\cos \alpha = \frac { 1 } { 16 }\).
  1. \(P\) is projected from \(A\) with speed \(u\) along the surface of the sphere downwards towards \(B\). Subsequently it loses contact with the sphere at \(A ^ { \prime }\). Show that \(u ^ { 2 } = \frac { 1 } { 8 } a g ( 1 + 24 \cos \beta )\).
  2. \(P\) is now projected from \(B\) with speed \(u\) along the surface of the sphere towards \(B ^ { \prime }\). Subsequently it loses contact with the sphere at \(B ^ { \prime }\). Find \(\cos \beta\).
  3. In part (i), the reaction of the sphere on \(P\) when it is initially projected at \(A\) is \(R\). Find \(R\) in terms of \(m\) and \(g\).
CAIE FP2 2017 November Q11 OR
A large number of people attended a course to improve the speed of their logical thinking. The times taken to complete a particular type of logic puzzle at the beginning of the course and at the end of the course are recorded for each person. The time taken, in minutes, at the beginning of the course is denoted by \(x\) and the time taken, in minutes, at the end of the course is denoted by \(y\). For a random sample of 9 people, the results are summarised as follows. $$\Sigma x = 45.3 \quad \Sigma x ^ { 2 } = 245.59 \quad \Sigma y = 40.5 \quad \Sigma y ^ { 2 } = 195.11 \quad \Sigma x y = 218.72$$ Ken attended the course, but his time to complete the puzzle at the beginning of the course was not recorded. His time to complete the puzzle at the end of the course was 4.2 minutes.
  1. By finding, showing all necessary working, the equation of a suitable regression line, find an estimate for the time that Ken would have taken to complete the puzzle at the beginning of the course.
    The values of \(x - y\) for the sample of 9 people are as follows. $$\begin{array} { l l l l l l l l l } 0.2 & 0.8 & 0.5 & 1.0 & 0.2 & 0.6 & 0.2 & 0.5 & 0.8 \end{array}$$ The organiser of the course believes that, on average, the time taken to complete the puzzle decreases between the beginning and the end of the course by more than 0.3 minutes.
  2. Stating suitable hypotheses and assuming a normal distribution, test the organiser's belief at the \(2 \frac { 1 } { 2 } \%\) significance level.
CAIE FP2 2017 November Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{1651d08b-b20f-4f2e-9f47-0a1a5d0a839a-06_465_663_262_742} A small ring \(P\) of weight \(W\) is free to slide on a rough horizontal wire, one end of which is attached to a vertical wall at \(Q\). The end \(A\) of a thin uniform \(\operatorname { rod } A B\) of length \(2 a\) and weight \(\frac { 5 } { 2 } W\) is freely hinged to the wall at the point \(A\) which is a distance \(a\) vertically below \(Q\). A light elastic string of natural length \(2 a\) has one end attached to the ring \(P\) and the other end attached to the rod at \(B\). The string is at right angles to the rod and \(A , B , P\) and \(Q\) lie in a vertical plane. The system is in limiting equilibrium with \(A B\) making an angle \(\theta\) with the horizontal, where \(\sin \theta = \frac { 3 } { 5 }\) (see diagram).
  1. Find the tension in the string in terms of \(W\).
  2. Find the coefficient of friction between the ring and the wire.
  3. Find the magnitude of the resultant force on the rod at the hinge in terms of \(W\).
  4. Find the modulus of elasticity of the string in terms of \(W\).
    \includegraphics[max width=\textwidth, alt={}, center]{1651d08b-b20f-4f2e-9f47-0a1a5d0a839a-08_862_698_260_721} A uniform picture frame of mass \(m\) is made by removing a rectangular lamina \(E F G H\) in which \(E F = 4 a\) and \(F G = 2 a\) from a larger rectangular lamina \(A B C D\) in which \(A B = 6 a\) and \(B C = 4 a\). The side \(E F\) is parallel to the side \(A B\). The point of intersection of the diagonals \(A C\) and \(B D\) coincides with the point of intersection of the diagonals \(E G\) and \(F H\). One end of a light inextensible string of length \(10 a\) is attached to \(A\) and the other end is attached to \(B\). The frame is suspended from the mid-point \(O\) of the string. A small object of mass \(\frac { 11 } { 12 } m\) is fixed to the mid-point of \(A B\) (see diagram).
CAIE FP2 2017 November Q11 EITHER
\includegraphics[max width=\textwidth, alt={}]{1651d08b-b20f-4f2e-9f47-0a1a5d0a839a-18_552_588_438_776}
A particle \(P\) of mass \(m\) is free to move on the smooth inner surface of a fixed hollow sphere of radius \(a\). The centre of the sphere is \(O\). The points \(A\) and \(A ^ { \prime }\) are on the inner surface of the sphere, on opposite sides of the vertical through \(O\); the radius \(O A\) makes an angle \(\alpha\) with the downward vertical and the radius \(O A ^ { \prime }\) makes an angle \(\beta\) with the upward vertical. The point \(B\) is on the inner surface of the sphere, vertically below \(O\). The point \(B ^ { \prime }\) is on the inner surface of the sphere and such that \(O B ^ { \prime }\) makes an angle \(2 \beta\) with the upward vertical through \(O\) (see diagram). It is given that \(\cos \alpha = \frac { 1 } { 16 }\).
  1. \(P\) is projected from \(A\) with speed \(u\) along the surface of the sphere downwards towards \(B\). Subsequently it loses contact with the sphere at \(A ^ { \prime }\). Show that \(u ^ { 2 } = \frac { 1 } { 8 } a g ( 1 + 24 \cos \beta )\).
  2. \(P\) is now projected from \(B\) with speed \(u\) along the surface of the sphere towards \(B ^ { \prime }\). Subsequently it loses contact with the sphere at \(B ^ { \prime }\). Find \(\cos \beta\).
  3. In part (i), the reaction of the sphere on \(P\) when it is initially projected at \(A\) is \(R\). Find \(R\) in terms of \(m\) and \(g\).
CAIE FP2 2017 November Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{2ab1a594-6c37-4c78-b53c-33c13bf6eb21-06_465_663_262_742} A small ring \(P\) of weight \(W\) is free to slide on a rough horizontal wire, one end of which is attached to a vertical wall at \(Q\). The end \(A\) of a thin uniform \(\operatorname { rod } A B\) of length \(2 a\) and weight \(\frac { 5 } { 2 } W\) is freely hinged to the wall at the point \(A\) which is a distance \(a\) vertically below \(Q\). A light elastic string of natural length \(2 a\) has one end attached to the ring \(P\) and the other end attached to the rod at \(B\). The string is at right angles to the rod and \(A , B , P\) and \(Q\) lie in a vertical plane. The system is in limiting equilibrium with \(A B\) making an angle \(\theta\) with the horizontal, where \(\sin \theta = \frac { 3 } { 5 }\) (see diagram).
  1. Find the tension in the string in terms of \(W\).
  2. Find the coefficient of friction between the ring and the wire.
  3. Find the magnitude of the resultant force on the rod at the hinge in terms of \(W\).
  4. Find the modulus of elasticity of the string in terms of \(W\).
    \includegraphics[max width=\textwidth, alt={}, center]{2ab1a594-6c37-4c78-b53c-33c13bf6eb21-08_862_698_260_721} A uniform picture frame of mass \(m\) is made by removing a rectangular lamina \(E F G H\) in which \(E F = 4 a\) and \(F G = 2 a\) from a larger rectangular lamina \(A B C D\) in which \(A B = 6 a\) and \(B C = 4 a\). The side \(E F\) is parallel to the side \(A B\). The point of intersection of the diagonals \(A C\) and \(B D\) coincides with the point of intersection of the diagonals \(E G\) and \(F H\). One end of a light inextensible string of length \(10 a\) is attached to \(A\) and the other end is attached to \(B\). The frame is suspended from the mid-point \(O\) of the string. A small object of mass \(\frac { 11 } { 12 } m\) is fixed to the mid-point of \(A B\) (see diagram).
CAIE FP2 2017 November Q11 EITHER
\includegraphics[max width=\textwidth, alt={}]{2ab1a594-6c37-4c78-b53c-33c13bf6eb21-18_552_588_438_776}
A particle \(P\) of mass \(m\) is free to move on the smooth inner surface of a fixed hollow sphere of radius \(a\). The centre of the sphere is \(O\). The points \(A\) and \(A ^ { \prime }\) are on the inner surface of the sphere, on opposite sides of the vertical through \(O\); the radius \(O A\) makes an angle \(\alpha\) with the downward vertical and the radius \(O A ^ { \prime }\) makes an angle \(\beta\) with the upward vertical. The point \(B\) is on the inner surface of the sphere, vertically below \(O\). The point \(B ^ { \prime }\) is on the inner surface of the sphere and such that \(O B ^ { \prime }\) makes an angle \(2 \beta\) with the upward vertical through \(O\) (see diagram). It is given that \(\cos \alpha = \frac { 1 } { 16 }\).
  1. \(P\) is projected from \(A\) with speed \(u\) along the surface of the sphere downwards towards \(B\). Subsequently it loses contact with the sphere at \(A ^ { \prime }\). Show that \(u ^ { 2 } = \frac { 1 } { 8 } a g ( 1 + 24 \cos \beta )\).
  2. \(P\) is now projected from \(B\) with speed \(u\) along the surface of the sphere towards \(B ^ { \prime }\). Subsequently it loses contact with the sphere at \(B ^ { \prime }\). Find \(\cos \beta\).
  3. In part (i), the reaction of the sphere on \(P\) when it is initially projected at \(A\) is \(R\). Find \(R\) in terms of \(m\) and \(g\).
CAIE FP2 2018 November Q1
1 A particle \(P\) oscillates in simple harmonic motion between the points \(A\) and \(B\), where \(A B = 6 \mathrm {~m}\). The period of the motion is \(\frac { 1 } { 2 } \pi \mathrm {~s}\). Find the speed of \(P\) when it is 2 m from \(B\).
CAIE FP2 2018 November Q2
2 Two uniform small smooth spheres \(A\) and \(B\) have equal radii and masses \(5 m\) and \(2 m\) respectively. Sphere \(A\) is moving with speed \(u\) on a smooth horizontal surface when it collides directly with sphere \(B\) which is moving towards it with speed \(2 u\). The coefficient of restitution between the spheres is \(e\).
  1. Show that the speed of \(B\) after the collision is \(\frac { 1 } { 7 } u ( 1 + 15 e )\) and find an expression for the speed of \(A\).
    In the collision, the speed of \(A\) is halved and its direction of motion is reversed.
  2. Find the value of \(e\).
  3. For this collision, find the ratio of the loss of kinetic energy of \(A\) to the loss of kinetic energy of \(B\).
    \includegraphics[max width=\textwidth, alt={}, center]{89a83576-4568-46c8-8872-f59f2397627d-04_630_332_264_900} A uniform disc, of radius \(a\) and mass \(2 M\), is attached to a thin uniform rod \(A B\) of length \(6 a\) and mass \(M\). The rod lies along a diameter of the disc, so that the centre of the disc is a distance \(x\) from \(A\) (see diagram).
  4. Find the moment of inertia of the object, consisting of disc and rod, about a fixed horizontal axis \(l\) through \(A\) and perpendicular to the plane of the disc.
    The object is free to rotate about the axis \(l\). The object is held with \(A B\) horizontal and is released from rest. When \(A B\) makes an angle \(\theta\) with the vertical, where \(\cos \theta = \frac { 3 } { 5 }\), the angular speed of the object is \(\sqrt { } \left( \frac { 2 g } { 5 a } \right)\).
  5. Find the possible values of \(x\).
CAIE FP2 2018 November Q4
4 A uniform rod \(A B\) of length \(4 a\) and weight \(W\) is smoothly hinged to a vertical wall at the end \(A\). The rod is held at an angle \(\theta\) above the horizontal by a light elastic string. One end of the string is attached to the point \(C\) on the rod, where \(A C = 3 a\). The other end of the string is attached to a point \(D\) on the wall, with \(D\) vertically above \(A\) and such that angle \(A C D = 2 \theta\). A particle of weight \(\frac { 1 } { 2 } W\) is attached to the rod at \(B\). It is given that \(\tan \theta = \frac { 8 } { 15 }\).
  1. Show that the tension in the string is \(\frac { 17 } { 12 } W\).
  2. Find the magnitude and direction of the reaction at the hinge.
  3. Given that the natural length of the string is \(2 a\), find its modulus of elasticity.
CAIE FP2 2018 November Q5
5 The fixed points \(A\) and \(B\) are on a smooth horizontal surface with \(A B = 2.6 \mathrm {~m}\). One end of a light elastic spring, of natural length 1.25 m and modulus of elasticity \(\lambda \mathrm { N }\), is attached to \(A\). The other end is attached to a particle \(P\) of mass 0.4 kg . One end of a second light elastic spring, of natural length 1.0 m and modulus of elasticity \(0.6 \lambda \mathrm {~N}\), is attached to \(B\); its other end is attached to \(P\). The system is in equilibrium with \(P\) on the surface at the point \(E\).
  1. Show that \(A E = 1.4 \mathrm {~m}\).
    The particle \(P\) is now displaced slightly from \(E\), along the line \(A B\).
  2. Show that, in the subsequent motion, \(P\) performs simple harmonic motion.
  3. Given that the period of the motion is \(\frac { 1 } { 7 } \pi \mathrm {~s}\), find the value of \(\lambda\).