CAIE FP2 2016 November — Question 3

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2016
SessionNovember
TopicMoments

3
\includegraphics[max width=\textwidth, alt={}, center]{184020e1-7ff2-4172-8d33-baff963afa76-3_898_1116_258_518} The end \(P\) of a uniform rod \(P Q\), of weight \(k W\) and length \(8 a\), is rigidly attached to a point on the surface of a uniform sphere with centre \(C\), weight \(W\) and radius \(a\). The end \(Q\) is rigidly attached to a point on the surface of an identical sphere with centre \(D\). The points \(C , P , Q\) and \(D\) are in a straight line. The object consisting of the rod and two spheres rests with one sphere in contact with a rough horizontal surface, at the point \(A\), and the other sphere in contact with a smooth vertical wall, at the point \(B\). The angle between \(C D\) and the horizontal is \(\theta\). The point \(B\) is at a height of \(7 a\) above the base of the wall (see diagram). The points \(A , B , C , D , P\) and \(Q\) are all in the same vertical plane.
  1. Show that \(\sin \theta = \frac { 3 } { 5 }\). The object is in limiting equilibrium and the coefficient of friction at \(A\) is \(\mu\).
  2. Find the numerical value of \(\mu\).
  3. Given that the resultant force on the object at \(A\) is \(W \sqrt { } ( 65 )\), show that \(k = 5\).