CAIE
FP2
2014
November
Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{2c6b6722-ebba-4ade-9a9d-dd70e61cf52b-2_312_409_525_868}
A small smooth ball \(P\) is moving on a smooth horizontal plane with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It strikes a smooth vertical barrier at an angle \(\alpha\) (see diagram). The coefficient of restitution between \(P\) and the barrier is 0.4 . Given that the speed of \(P\) is halved as a result of the collision, find the value of \(\alpha\).
CAIE
FP2
2014
November
Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{2c6b6722-ebba-4ade-9a9d-dd70e61cf52b-2_413_414_1155_863}
A smooth cylinder of radius \(a\) is fixed with its axis horizontal. The point \(O\) is the centre of a circular cross-section of the cylinder. The line \(A O B\) is a diameter of this circular cross-section and the radius \(O A\) makes an angle \(\alpha\) with the upward vertical (see diagram). It is given that \(\cos \alpha = \frac { 3 } { 5 }\). A particle \(P\) of mass \(m\) moves on the inner surface of the cylinder in the plane of the cross-section. The particle passes through \(A\) with speed \(u\) along the surface in the downwards direction. The magnitude of the reaction between \(P\) and the inner surface of the sphere is \(R _ { A }\) when \(P\) is at \(A\), and is \(R _ { B }\) when \(P\) is at \(B\). It is given that \(R _ { B } = 10 R _ { A }\). Show that \(u ^ { 2 } = a g\).
The particle loses contact with the surface of the cylinder when \(O P\) makes an angle \(\theta\) with the upward vertical. Find the value of \(\cos \theta\).
CAIE
FP2
2014
November
Q6
6 A random sample of 50 observations of a random variable \(X\) and a random sample of 60 observations of a random variable \(Y\) are taken. The results for the sample means, \(\bar { x }\) and \(\bar { y }\), and the unbiased estimates for the population variances, \(s _ { x } ^ { 2 }\) and \(s _ { y } ^ { 2 }\), respectively, are as follows.
$$\bar { x } = 25.4 \quad \bar { y } = 23.6 \quad s _ { x } ^ { 2 } = 23.2 \quad s _ { y } ^ { 2 } = 27.8$$
A test, at the \(\alpha \%\) significance level, of the null hypothesis that the population means of \(X\) and \(Y\) are equal against the alternative hypothesis that they are not equal is carried out. Given that the null hypothesis is not rejected, find the set of possible values of \(\alpha\).
CAIE
FP2
2014
November
Q11 OR
Fish of a certain species live in two separate lakes, \(A\) and \(B\). A zoologist claims that the mean length of fish in \(A\) is greater than the mean length of fish in \(B\). To test his claim, he catches a random sample of 8 fish from \(A\) and a random sample of 6 fish from \(B\). The lengths of the 8 fish from \(A\), in appropriate units, are as follows.
$$\begin{array} { l l l l l l l l }
15.3 & 12.0 & 15.1 & 11.2 & 14.4 & 13.8 & 12.4 & 11.8
\end{array}$$
Assuming a normal distribution, find a \(95 \%\) confidence interval for the mean length of fish in \(A\).
The lengths of the 6 fish from \(B\), in the same units, are as follows.
$$\begin{array} { l l l l l l }
15.0 & 10.7 & 13.6 & 12.4 & 11.6 & 12.6
\end{array}$$
Stating any assumptions that you make, test at the \(5 \%\) significance level whether the mean length of fish in \(A\) is greater than the mean length of fish in \(B\).
Calculate a 95\% confidence interval for the difference in the mean lengths of fish from \(A\) and from \(B\).
CAIE
FP2
2014
November
Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{699490ab-a01a-46e2-aa7c-3fd48c962c0c-2_312_409_525_868}
A small smooth ball \(P\) is moving on a smooth horizontal plane with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It strikes a smooth vertical barrier at an angle \(\alpha\) (see diagram). The coefficient of restitution between \(P\) and the barrier is 0.4 . Given that the speed of \(P\) is halved as a result of the collision, find the value of \(\alpha\).
CAIE
FP2
2014
November
Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{699490ab-a01a-46e2-aa7c-3fd48c962c0c-2_413_414_1155_863}
A smooth cylinder of radius \(a\) is fixed with its axis horizontal. The point \(O\) is the centre of a circular cross-section of the cylinder. The line \(A O B\) is a diameter of this circular cross-section and the radius \(O A\) makes an angle \(\alpha\) with the upward vertical (see diagram). It is given that \(\cos \alpha = \frac { 3 } { 5 }\). A particle \(P\) of mass \(m\) moves on the inner surface of the cylinder in the plane of the cross-section. The particle passes through \(A\) with speed \(u\) along the surface in the downwards direction. The magnitude of the reaction between \(P\) and the inner surface of the sphere is \(R _ { A }\) when \(P\) is at \(A\), and is \(R _ { B }\) when \(P\) is at \(B\). It is given that \(R _ { B } = 10 R _ { A }\). Show that \(u ^ { 2 } = a g\).
The particle loses contact with the surface of the cylinder when \(O P\) makes an angle \(\theta\) with the upward vertical. Find the value of \(\cos \theta\).
CAIE
FP2
2014
November
Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{5d40f5b4-e3d4-482c-8d8d-05a01bd3b43f-2_312_409_525_868}
A small smooth ball \(P\) is moving on a smooth horizontal plane with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It strikes a smooth vertical barrier at an angle \(\alpha\) (see diagram). The coefficient of restitution between \(P\) and the barrier is 0.4 . Given that the speed of \(P\) is halved as a result of the collision, find the value of \(\alpha\).
CAIE
FP2
2014
November
Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{5d40f5b4-e3d4-482c-8d8d-05a01bd3b43f-2_413_414_1155_863}
A smooth cylinder of radius \(a\) is fixed with its axis horizontal. The point \(O\) is the centre of a circular cross-section of the cylinder. The line \(A O B\) is a diameter of this circular cross-section and the radius \(O A\) makes an angle \(\alpha\) with the upward vertical (see diagram). It is given that \(\cos \alpha = \frac { 3 } { 5 }\). A particle \(P\) of mass \(m\) moves on the inner surface of the cylinder in the plane of the cross-section. The particle passes through \(A\) with speed \(u\) along the surface in the downwards direction. The magnitude of the reaction between \(P\) and the inner surface of the sphere is \(R _ { A }\) when \(P\) is at \(A\), and is \(R _ { B }\) when \(P\) is at \(B\). It is given that \(R _ { B } = 10 R _ { A }\). Show that \(u ^ { 2 } = a g\).
The particle loses contact with the surface of the cylinder when \(O P\) makes an angle \(\theta\) with the upward vertical. Find the value of \(\cos \theta\).
CAIE
FP2
2015
November
Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{13457d19-ee13-4f91-a22f-240c85068f48-2_744_504_255_824}
A uniform ladder \(A B\), of length \(3 a\) and weight \(W\), rests with the end \(A\) in contact with smooth horizontal ground and the end \(B\) against a smooth vertical wall. One end of a light inextensible rope is attached to the ladder at the point \(C\), where \(A C = a\). The other end of the rope is fixed to the point \(D\) at the base of the wall and the rope \(D C\) is in the same vertical plane as the ladder \(A B\). The ladder rests in equilibrium in a vertical plane perpendicular to the wall, with the ladder making an angle \(\theta\) with the horizontal and the rope making an angle \(\alpha\) with the horizontal (see diagram). It is given that \(\tan \theta = 2 \tan \alpha\). Find, in terms of \(W\) and \(\alpha\), the tension in the rope and the magnitudes of the forces acting on the ladder at \(A\) and at \(B\).
CAIE
FP2
2015
November
Q2
2 A small uniform sphere \(A\), of mass \(2 m\), is moving with speed \(u\) on a smooth horizontal surface when it collides directly with a small uniform sphere \(B\), of mass \(m\), which is at rest. The spheres have equal radii and the coefficient of restitution between them is \(e\). Find expressions for the speeds of \(A\) and \(B\) immediately after the collision.
Subsequently \(B\) collides with a vertical wall which is perpendicular to the direction of motion of \(B\). The coefficient of restitution between \(B\) and the wall is 0.4 . After \(B\) has collided with the wall, the speeds of \(A\) and \(B\) are equal. Find \(e\).
Initially \(B\) is at a distance \(d\) from the wall. Find the distance of \(B\) from the wall when it next collides with \(A\).
\(3 A\) and \(B\) are two fixed points on a smooth horizontal surface, with \(A B = 3 a \mathrm {~m}\). One end of a light elastic string, of natural length \(a \mathrm {~m}\) and modulus of elasticity \(m g \mathrm {~N}\), is attached to the point \(A\). The other end of this string is attached to a particle \(P\) of mass \(m \mathrm {~kg}\). One end of a second light elastic string, of natural length \(k a m\) and modulus of elasticity \(2 m g \mathrm {~N}\), is attached to \(B\). The other end of this string is attached to \(P\). Given that the system is in equilibrium when \(P\) is at \(M\), the mid-point of \(A B\), find the value of \(k\).
The particle \(P\) is released from rest at a point between \(A\) and \(B\) where both strings are taut. Show that \(P\) performs simple harmonic motion and state the period of the motion.
In the case where \(P\) is released from rest at a distance \(0.2 a \mathrm {~m}\) from \(M\), the speed of \(P\) is \(0.7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when \(P\) is \(0.05 a \mathrm {~m}\) from \(M\). Find the value of \(a\).
CAIE
FP2
2015
November
Q4
4 A particle \(P\) of mass \(m\) is attached to one end of a light inextensible string of length \(a\). The other end of the string is attached to a fixed point \(O\). When \(P\) is hanging at rest vertically below \(O\), it is projected horizontally. In the subsequent motion \(P\) completes a vertical circle. The speed of \(P\) when it is at its highest point is \(u\). Show that the least possible value of \(u\) is \(\sqrt { } ( a g )\).
It is now given that \(u = \sqrt { } ( \mathrm { ag } )\). When \(P\) passes through the lowest point of its path, it collides with, and coalesces with, a stationary particle of mass \(\frac { 1 } { 4 } m\). Find the speed of the combined particle immediately after the collision.
In the subsequent motion, when \(O P\) makes an angle \(\theta\) with the upward vertical the tension in the string is \(T\). Find an expression for \(T\) in terms of \(m , g\) and \(\theta\).
Find the value of \(\cos \theta\) when the string becomes slack.