Questions — AQA C2 (184 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA C2 2007 January Q9
9
  1. Solve the equation \(3 \log _ { a } x = \log _ { a } 8\).
  2. Show that $$3 \log _ { a } 6 - \log _ { a } 8 = \log _ { a } 27$$
    1. The point \(P ( 3 , p )\) lies on the curve \(y = 3 \log _ { 10 } x - \log _ { 10 } 8\). Show that \(p = \log _ { 10 } \left( \frac { 27 } { 8 } \right)\).
    2. The point \(Q ( 6 , q )\) also lies on the curve \(y = 3 \log _ { 10 } x - \log _ { 10 } 8\). Show that the gradient of the line \(P Q\) is \(\log _ { 10 } 2\).
AQA C2 2007 June Q1
1
  1. Simplify:
    1. \(x ^ { \frac { 3 } { 2 } } \times x ^ { \frac { 1 } { 2 } }\);
    2. \(x ^ { \frac { 3 } { 2 } } \div x\);
    3. \(\left( x ^ { \frac { 3 } { 2 } } \right) ^ { 2 }\).
    1. Find \(\int 3 x ^ { \frac { 1 } { 2 } } \mathrm {~d} x\).
    2. Hence find the value of \(\int _ { 1 } ^ { 9 } 3 x ^ { \frac { 1 } { 2 } } \mathrm {~d} x\).
AQA C2 2007 June Q2
2 The \(n\)th term of a geometric sequence is \(u _ { n }\), where $$u _ { n } = 3 \times 4 ^ { n }$$
  1. Find the value of \(u _ { 1 }\) and show that \(u _ { 2 } = 48\).
  2. Write down the common ratio of the geometric sequence.
    1. Show that the sum of the first 12 terms of the geometric sequence is \(4 ^ { k } - 4\), where \(k\) is an integer.
    2. Hence find the value of \(\sum _ { n = 2 } ^ { 12 } u _ { n }\).
AQA C2 2007 June Q3
3 The diagram shows a sector \(O A B\) of a circle with centre \(O\) and radius 20 cm . The angle between the radii \(O A\) and \(O B\) is \(\theta\) radians.
\includegraphics[max width=\textwidth, alt={}, center]{ad574bde-3bf1-45be-a454-9c723088b357-3_453_499_429_804} The length of the \(\operatorname { arc } A B\) is 28 cm .
  1. Show that \(\theta = 1.4\).
  2. Find the area of the sector \(O A B\).
  3. The point \(D\) lies on \(O A\). The region bounded by the line \(B D\), the line \(D A\) and the arc \(A B\) is shaded.
    \includegraphics[max width=\textwidth, alt={}, center]{ad574bde-3bf1-45be-a454-9c723088b357-3_440_380_1372_806} The length of \(O D\) is 15 cm .
    1. Find the area of the shaded region, giving your answer to three significant figures.
      (3 marks)
    2. Use the cosine rule to calculate the length of \(B D\), giving your answer to three significant figures.
      (3 marks)
AQA C2 2007 June Q4
4 An arithmetic series has first term \(a\) and common difference \(d\).
The sum of the first 29 terms is 1102.
  1. Show that \(a + 14 d = 38\).
  2. The sum of the second term and the seventh term is 13 . Find the value of \(a\) and the value of \(d\).
AQA C2 2007 June Q5
5 A curve is defined for \(x > 0\) by the equation $$y = \left( 1 + \frac { 2 } { x } \right) ^ { 2 }$$ The point \(P\) lies on the curve where \(x = 2\).
  1. Find the \(y\)-coordinate of \(P\).
  2. Expand \(\left( 1 + \frac { 2 } { x } \right) ^ { 2 }\).
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  4. Hence show that the gradient of the curve at \(P\) is - 2 .
  5. Find the equation of the normal to the curve at \(P\), giving your answer in the form \(x + b y + c = 0\), where \(b\) and \(c\) are integers.
AQA C2 2007 June Q6
6 The diagram shows a sketch of the curve with equation \(y = 3 \left( 2 ^ { x } + 1 \right)\).
\includegraphics[max width=\textwidth, alt={}, center]{ad574bde-3bf1-45be-a454-9c723088b357-5_465_851_390_607} The curve \(y = 3 \left( 2 ^ { x } + 1 \right)\) intersects the \(y\)-axis at the point \(A\).
  1. Find the \(y\)-coordinate of the point \(A\).
  2. Use the trapezium rule with four ordinates (three strips) to find an approximate value for \(\int _ { 0 } ^ { 6 } 3 \left( 2 ^ { x } + 1 \right) d x\).
  3. The line \(y = 21\) intersects the curve \(y = 3 \left( 2 ^ { x } + 1 \right)\) at the point \(P\).
    1. Show that the \(x\)-coordinate of \(P\) satisfies the equation $$2 ^ { x } = 6$$
    2. Use logarithms to find the \(x\)-coordinate of \(P\), giving your answer to three significant figures.
AQA C2 2007 June Q7
7
  1. Sketch the graph of \(y = \tan x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Write down the two solutions of the equation \(\tan x = \tan 61 ^ { \circ }\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    1. Given that \(\sin \theta + \cos \theta = 0\), show that \(\tan \theta = - 1\).
    2. Hence solve the equation \(\sin \left( x - 20 ^ { \circ } \right) + \cos \left( x - 20 ^ { \circ } \right) = 0\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  3. Describe the single geometrical transformation that maps the graph of \(y = \tan x\) onto the graph of \(y = \tan \left( x - 20 ^ { \circ } \right)\).
  4. The curve \(y = \tan x\) is stretched in the \(x\)-direction with scale factor \(\frac { 1 } { 4 }\) to give the curve with equation \(y = \mathrm { f } ( x )\). Write down an expression for \(\mathrm { f } ( x )\).
AQA C2 2007 June Q8
8
  1. It is given that \(n\) satisfies the equation $$\log _ { a } n = \log _ { a } 3 + \log _ { a } ( 2 n - 1 )$$ Find the value of \(n\).
  2. Given that \(\log _ { a } x = 3\) and \(\log _ { a } y - 3 \log _ { a } 2 = 4\) :
    1. express \(x\) in terms of \(a\);
    2. express \(x y\) in terms of \(a\).