Sketch the graph of \(y = \tan x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Write down the two solutions of the equation \(\tan x = \tan 61 ^ { \circ }\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Given that \(\sin \theta + \cos \theta = 0\), show that \(\tan \theta = - 1\).
Hence solve the equation \(\sin \left( x - 20 ^ { \circ } \right) + \cos \left( x - 20 ^ { \circ } \right) = 0\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Describe the single geometrical transformation that maps the graph of \(y = \tan x\) onto the graph of \(y = \tan \left( x - 20 ^ { \circ } \right)\).
The curve \(y = \tan x\) is stretched in the \(x\)-direction with scale factor \(\frac { 1 } { 4 }\) to give the curve with equation \(y = \mathrm { f } ( x )\). Write down an expression for \(\mathrm { f } ( x )\).