6 The diagram shows a sketch of the curve with equation \(y = 3 \left( 2 ^ { x } + 1 \right)\).
\includegraphics[max width=\textwidth, alt={}, center]{ad574bde-3bf1-45be-a454-9c723088b357-5_465_851_390_607}
The curve \(y = 3 \left( 2 ^ { x } + 1 \right)\) intersects the \(y\)-axis at the point \(A\).
- Find the \(y\)-coordinate of the point \(A\).
- Use the trapezium rule with four ordinates (three strips) to find an approximate value for \(\int _ { 0 } ^ { 6 } 3 \left( 2 ^ { x } + 1 \right) d x\).
- The line \(y = 21\) intersects the curve \(y = 3 \left( 2 ^ { x } + 1 \right)\) at the point \(P\).
- Show that the \(x\)-coordinate of \(P\) satisfies the equation
$$2 ^ { x } = 6$$
- Use logarithms to find the \(x\)-coordinate of \(P\), giving your answer to three significant figures.