AQA FP3 2010 January — Question 3

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2010
SessionJanuary
TopicFirst order differential equations (integrating factor)

3
  1. A differential equation is given by $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 x$$ Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x }$$ transforms this differential equation into $$\frac { \mathrm { d } u } { \mathrm {~d} x } + \frac { 2 } { x } u = 3$$
  2. Find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } + \frac { 2 } { x } u = 3$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 x$$ giving your answer in the form \(y = \mathrm { g } ( x )\).