A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Second order differential equations
Q8
AQA FP3 2008 January — Question 8
Exam Board
AQA
Module
FP3 (Further Pure Mathematics 3)
Year
2008
Session
January
Topic
Second order differential equations
8
Given that \(x = \mathrm { e } ^ { t }\) and that \(y\) is a function of \(x\), show that:
\(x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t }\);
\(\quad x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t }\).
Hence find the general solution of the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y = 0$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8