Edexcel
C3
2009
January
Q6
13 marks
Standard +0.3
6. (a) (i) By writing \(3 \theta = ( 2 \theta + \theta )\), show that
$$\sin 3 \theta = 3 \sin \theta - 4 \sin ^ { 3 } \theta$$
(ii) Hence, or otherwise, for \(0 < \theta < \frac { \pi } { 3 }\), solve
$$8 \sin ^ { 3 } \theta - 6 \sin \theta + 1 = 0 .$$
Give your answers in terms of \(\pi\).
(b) Using \(\sin ( \theta - \alpha ) = \sin \theta \cos \alpha - \cos \theta \sin \alpha\), or otherwise, show that
$$\sin 15 ^ { \circ } = \frac { 1 } { 4 } ( \sqrt { } 6 - \sqrt { } 2 )$$
Edexcel
C3
Q5
8 marks
Standard +0.3
5. (i) Given that \(\sin x = \frac { 3 } { 5 }\), use an appropriate double angle formula to find the exact value of \(\sec 2 x\).
(ii) Prove that
$$\cot 2 x + \operatorname { cosec } 2 x \equiv \cot x , \quad \left( x \neq \frac { n \pi } { 2 } , n \in Z \right)$$
Edexcel
C4
Q8
13 marks
Standard +0.3
8. (i) Given that \(\cos ( x + 30 ) ^ { \circ } = 3 \cos ( x - 30 ) ^ { \circ }\), prove that tan \(x ^ { \circ } = - \frac { \sqrt { 3 } } { 2 }\).
(ii) (a) Prove that \(\frac { 1 - \cos 2 \theta } { \sin 2 \theta } \equiv \tan \theta\).
(b) Verify that \(\theta = 180 ^ { \circ }\) is a solution of the equation \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).
(c) Using the result in part (a), or otherwise, find the other two solutions, \(0 < \theta < 360 ^ { \circ }\), of the equation using \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).