Prove identity then mixed applications

A question is this type if and only if it has multiple parts where the first part proves a trigonometric identity, and subsequent parts include a combination of solving equations, evaluating integrals, and/or finding exact values.

25 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
CAIE P2 2020 June Q6
10 marks Standard +0.8
6
  1. Prove that $$\sin 2 \theta ( \operatorname { cosec } \theta - \sec \theta ) \equiv \sqrt { 8 } \cos \left( \theta + \frac { 1 } { 4 } \pi \right)$$
  2. Solve the equation $$\sin 2 \theta ( \operatorname { cosec } \theta - \sec \theta ) = 1$$ for \(0 < \theta < \frac { 1 } { 2 } \pi\). Give the answer correct to 3 significant figures.
  3. Find \(\int \sin x \left( \operatorname { cosec } \frac { 1 } { 2 } x - \sec \frac { 1 } { 2 } x \right) \mathrm { d } x\).
CAIE P2 2023 June Q6
10 marks Standard +0.3
6
  1. Show that \(4 \sin \left( \theta + \frac { 1 } { 3 } \pi \right) \cos \left( \theta - \frac { 1 } { 3 } \pi \right) \equiv \sqrt { 3 } + 2 \sin 2 \theta\).
  2. Find the exact value of \(4 \sin \frac { 17 } { 24 } \pi \cos \frac { 1 } { 24 } \pi\).
  3. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 8 } \pi } 4 \sin \left( 2 x + \frac { 1 } { 3 } \pi \right) \cos \left( 2 x - \frac { 1 } { 3 } \pi \right) \mathrm { d } x\).
CAIE P2 2022 March Q4
7 marks Standard +0.3
4
  1. Show that \(\sin 2 \theta \cot \theta - \cos 2 \theta \equiv 1\).
  2. Hence find the exact value of \(\sin \frac { 1 } { 6 } \pi \cot \frac { 1 } { 12 } \pi\).
  3. Find the smallest positive value of \(\theta\) (in radians) satisfying the equation $$\sin 2 \theta \cot \theta - 3 \cos 2 \theta = 1 .$$
CAIE P2 2024 March Q7
10 marks Standard +0.3
7
  1. Prove that $$\sin 2 \theta ( a \cot \theta + b \tan \theta ) \equiv a + b + ( a - b ) \cos 2 \theta$$ where \(a\) and \(b\) are constants.
  2. Find the exact value of \(\int _ { \frac { 1 } { 12 } \pi } ^ { \frac { 1 } { 6 } \pi } \sin 2 \theta ( 5 \cot \theta + 3 \tan \theta ) d \theta\).
  3. Solve the equation \(\sin \frac { 2 } { 3 } \alpha \left( 2 \cot \frac { 1 } { 3 } \alpha + 7 \tan \frac { 1 } { 3 } \alpha \right) = 11\) for \(- \pi < \alpha < \pi\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE P2 2021 November Q7
10 marks Standard +0.8
7
  1. Prove that \(4 \sin x \sin \left( x + \frac { 1 } { 6 } \pi \right) \equiv \sqrt { 3 } - \sqrt { 3 } \cos 2 x + \sin 2 x\).
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 5 } { 6 } \pi } 4 \sin x \sin \left( x + \frac { 1 } { 6 } \pi \right) \mathrm { d } x\).
  3. Find the smallest positive value of \(y\) satisfying the equation $$4 \sin ( 2 y ) \sin \left( 2 y + \frac { 1 } { 6 } \pi \right) = \sqrt { 3 } .$$ Give your answer in an exact form.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2024 November Q7
11 marks Standard +0.3
7
  1. Prove that \(\cos \left( \theta + 30 ^ { \circ } \right) \cos \left( \theta + 60 ^ { \circ } \right) \equiv \frac { 1 } { 4 } \sqrt { 3 } - \frac { 1 } { 2 } \sin 2 \theta\).
  2. Solve the equation \(5 \cos \left( 2 \alpha + 30 ^ { \circ } \right) \cos \left( 2 \alpha + 60 ^ { \circ } \right) = 1\) for \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  3. Show that the exact value of \(\cos 20 ^ { \circ } \cos 50 ^ { \circ } + \cos 40 ^ { \circ } \cos 70 ^ { \circ }\) is \(\frac { 1 } { 2 } \sqrt { 3 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
    \includegraphics[max width=\textwidth, alt={}, center]{dcc483e9-630e-4f02-ad8c-4a27c0720fc6-14_2714_38_109_2010}
CAIE P2 2024 November Q7
11 marks Standard +0.3
7
  1. Prove that \(\cos \left( \theta + 30 ^ { \circ } \right) \cos \left( \theta + 60 ^ { \circ } \right) \equiv \frac { 1 } { 4 } \sqrt { 3 } - \frac { 1 } { 2 } \sin 2 \theta\).
  2. Solve the equation \(5 \cos \left( 2 \alpha + 30 ^ { \circ } \right) \cos \left( 2 \alpha + 60 ^ { \circ } \right) = 1\) for \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  3. Show that the exact value of \(\cos 20 ^ { \circ } \cos 50 ^ { \circ } + \cos 40 ^ { \circ } \cos 70 ^ { \circ }\) is \(\frac { 1 } { 2 } \sqrt { 3 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE P2 2016 June Q4
8 marks Standard +0.3
4
  1. Show that \(\sin \left( \theta + 60 ^ { \circ } \right) + \sin \left( \theta + 120 ^ { \circ } \right) \equiv ( \sqrt { } 3 ) \cos \theta\).
  2. Hence
    (a) find the exact value of \(\sin 105 ^ { \circ } + \sin 165 ^ { \circ }\),
    (b) solve the equation \(\sin \left( \theta + 60 ^ { \circ } \right) + \sin \left( \theta + 120 ^ { \circ } \right) = \sec \theta\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
CAIE P3 2011 June Q9
10 marks Standard +0.8
9
  1. Prove the identity \(\cos 4 \theta + 4 \cos 2 \theta \equiv 8 \cos ^ { 4 } \theta - 3\).
  2. Hence
    (a) solve the equation \(\cos 4 \theta + 4 \cos 2 \theta = 1\) for \(- \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\),
    (b) find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { 4 } \theta \mathrm {~d} \theta\).
CAIE P3 2019 June Q10
12 marks Standard +0.3
10
\includegraphics[max width=\textwidth, alt={}, center]{772393d7-6e81-4b99-913a-63c9f87d1af2-16_524_689_260_726} The diagram shows the curve \(y = \sin 3 x \cos x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\) and its minimum point \(M\). The shaded region \(R\) is bounded by the curve and the \(x\)-axis.
  1. By expanding \(\sin ( 3 x + x )\) and \(\sin ( 3 x - x )\) show that $$\sin 3 x \cos x = \frac { 1 } { 2 } ( \sin 4 x + \sin 2 x ) .$$
  2. Using the result of part (i) and showing all necessary working, find the exact area of the region \(R\).
  3. Using the result of part (i), express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\cos 2 x\) and hence find the \(x\)-coordinate of \(M\), giving your answer correct to 2 decimal places.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2014 November Q4
7 marks Standard +0.3
4
  1. Show that \(\cos \left( \theta - 60 ^ { \circ } \right) + \cos \left( \theta + 60 ^ { \circ } \right) \equiv \cos \theta\).
  2. Given that \(\frac { \cos \left( 2 x - 60 ^ { \circ } \right) + \cos \left( 2 x + 60 ^ { \circ } \right) } { \cos \left( x - 60 ^ { \circ } \right) + \cos \left( x + 60 ^ { \circ } \right) } = 3\), find the exact value of \(\cos x\).
CAIE P3 2019 November Q9
10 marks Standard +0.3
9
  1. By first expanding \(\cos ( 2 x + x )\), show that \(\cos 3 x \equiv 4 \cos ^ { 3 } x - 3 \cos x\).
  2. Hence solve the equation \(\cos 3 x + 3 \cos x + 1 = 0\), for \(0 \leqslant x \leqslant \pi\).
  3. Find the exact value of \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 3 } \pi } \cos ^ { 3 } x \mathrm {~d} x\).
Edexcel C3 2009 January Q6
13 marks Standard +0.3
6. (a) (i) By writing \(3 \theta = ( 2 \theta + \theta )\), show that $$\sin 3 \theta = 3 \sin \theta - 4 \sin ^ { 3 } \theta$$ (ii) Hence, or otherwise, for \(0 < \theta < \frac { \pi } { 3 }\), solve $$8 \sin ^ { 3 } \theta - 6 \sin \theta + 1 = 0 .$$ Give your answers in terms of \(\pi\).
(b) Using \(\sin ( \theta - \alpha ) = \sin \theta \cos \alpha - \cos \theta \sin \alpha\), or otherwise, show that $$\sin 15 ^ { \circ } = \frac { 1 } { 4 } ( \sqrt { } 6 - \sqrt { } 2 )$$
Edexcel C3 2014 January Q7
13 marks Standard +0.3
7. (i) (a) Prove that $$\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta$$ (You may use the double angle formulae and the identity $$\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B )$$ (b) Hence solve the equation $$2 \cos 3 \theta + \cos 2 \theta + 1 = 0$$ giving answers in the interval \(0 \leqslant \theta \leqslant \pi\).
Solutions based entirely on graphical or numerical methods are not acceptable.
(ii) Given that \(\theta = \arcsin x\) and that \(0 < \theta < \frac { \pi } { 2 }\), show that $$\cot \theta = \frac { \sqrt { \left( 1 - x ^ { 2 } \right) } } { x } , \quad 0 < x < 1$$
Edexcel C3 2006 June Q8
12 marks Standard +0.3
  1. (a) Given that \(\cos A = \frac { 3 } { 4 }\), where \(270 ^ { \circ } < A < 360 ^ { \circ }\), find the exact value of \(\sin 2 A\).
    (b) (i) Show that \(\cos \left( 2 x + \frac { \pi } { 3 } \right) + \cos \left( 2 x - \frac { \pi } { 3 } \right) \equiv \cos 2 x\).
Given that $$y = 3 \sin ^ { 2 } x + \cos \left( 2 x + \frac { \pi } { 3 } \right) + \cos \left( 2 x - \frac { \pi } { 3 } \right)$$ (ii) show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sin 2 x\).
OCR C3 2008 January Q9
12 marks Standard +0.8
9
  1. Use the identity for \(\cos ( A + B )\) to prove that $$4 \cos \left( \theta + 60 ^ { \circ } \right) \cos \left( \theta + 30 ^ { \circ } \right) \equiv \sqrt { 3 } - 2 \sin 2 \theta .$$
  2. Hence find the exact value of \(4 \cos 82.5 ^ { \circ } \cos 52.5 ^ { \circ }\).
  3. Solve, for \(0 ^ { \circ } < \theta < 90 ^ { \circ }\), the equation \(4 \cos \left( \theta + 60 ^ { \circ } \right) \cos \left( \theta + 30 ^ { \circ } \right) = 1\).
  4. Given that there are no values of \(\theta\) which satisfy the equation $$4 \cos \left( \theta + 60 ^ { \circ } \right) \cos \left( \theta + 30 ^ { \circ } \right) = k ,$$ determine the set of values of the constant \(k\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
OCR C3 2007 June Q9
12 marks Standard +0.8
9
  1. Prove the identity $$\tan \left( \theta + 60 ^ { \circ } \right) \tan \left( \theta - 60 ^ { \circ } \right) \equiv \frac { \tan ^ { 2 } \theta - 3 } { 1 - 3 \tan ^ { 2 } \theta }$$
  2. Solve, for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\), the equation $$\tan \left( \theta + 60 ^ { \circ } \right) \tan \left( \theta - 60 ^ { \circ } \right) = 4 \sec ^ { 2 } \theta - 3 ,$$ giving your answers correct to the nearest \(0.1 ^ { \circ }\).
  3. Show that, for all values of the constant k , the equation $$\tan \left( \theta + 60 ^ { \circ } \right) \tan \left( \theta - 60 ^ { \circ } \right) = \mathrm { K } ^ { 2 }$$ has two roots in the interval \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
Edexcel AEA 2019 June Q4
17 marks Challenging +1.8
4.(a)Prove the identity $$( \sin x + \cos y ) \cos ( x - y ) \equiv ( 1 + \sin ( x - y ) ) ( \cos x + \sin y )$$ (b)Hence,or otherwise,show that $$\frac { \sin 5 \theta + \cos 3 \theta } { \cos 5 \theta + \sin 3 \theta } \equiv \frac { 1 + \tan \theta } { 1 - \tan \theta }$$ (c)Given that \(k > 1\) ,show that the equation \(\frac { \sin 5 \theta + \cos 3 \theta } { \cos 5 \theta + \sin 3 \theta } = k\) has a unique solution in the interval \(0 < \theta < \frac { \pi } { 4 }\)
OCR C3 2012 January Q8
10 marks Standard +0.3
8
  1. Express \(\cos 4 \theta\) in terms of \(\sin 2 \theta\) and hence show that \(\cos 4 \theta\) can be expressed in the form \(1 - k \sin ^ { 2 } \theta \cos ^ { 2 } \theta\), where \(k\) is a constant to be determined.
  2. Hence find the exact value of \(\sin ^ { 2 } \left( \frac { 1 } { 24 } \pi \right) \cos ^ { 2 } \left( \frac { 1 } { 24 } \pi \right)\).
  3. By expressing \(2 \cos ^ { 2 } 2 \theta - \frac { 8 } { 3 } \sin ^ { 2 } \theta \cos ^ { 2 } \theta\) in terms of \(\cos 4 \theta\), find the greatest and least possible values of $$2 \cos ^ { 2 } 2 \theta - \frac { 8 } { 3 } \sin ^ { 2 } \theta \cos ^ { 2 } \theta$$ as \(\theta\) varies.
    \includegraphics[max width=\textwidth, alt={}, center]{89e54367-bb83-483a-add5-0527b71a5cac-5_606_926_267_552} The function f is defined for all real values of \(x\) by $$\mathrm { f } ( x ) = k \left( x ^ { 2 } + 4 x \right) ,$$ where \(k\) is a positive constant. The diagram shows the curve with equation \(y = \mathrm { f } ( x )\).
  4. The curve \(y = x ^ { 2 }\) can be transformed to the curve \(y = \mathrm { f } ( x )\) by the following sequence of transformations: a translation parallel to the \(x\)-axis,
    a translation parallel to the \(y\)-axis,
    a stretch. a translation parallel to the \(x\)-axis, a translation parallel to the \(y\)-axis, a stretch.
    Give details, in terms of \(k\) where appropriate, of these transformations.
  5. Find the range of f in terms of \(k\).
  6. It is given that there are three distinct values of \(x\) which satisfy the equation \(| \mathrm { f } ( x ) | = 20\). Find the value of \(k\) and determine exactly the three values of \(x\) which satisfy the equation in this case.
OCR C3 2011 June Q9
12 marks Standard +0.3
9
  1. Prove that \(\frac { \sin ( \theta - \alpha ) + 3 \sin \theta + \sin ( \theta + \alpha ) } { \cos ( \theta - \alpha ) + 3 \cos \theta + \cos ( \theta + \alpha ) } \equiv \tan \theta\) for all values of \(\alpha\).
  2. Find the exact value of \(\frac { 4 \sin 149 ^ { \circ } + 12 \sin 150 ^ { \circ } + 4 \sin 151 ^ { \circ } } { 3 \cos 149 ^ { \circ } + 9 \cos 150 ^ { \circ } + 3 \cos 151 ^ { \circ } }\).
  3. It is given that \(k\) is a positive constant. Solve, for \(0 ^ { \circ } < \theta < 60 ^ { \circ }\) and in terms of \(k\), the equation $$\frac { \sin \left( 6 \theta - 15 ^ { \circ } \right) + 3 \sin 6 \theta + \sin \left( 6 \theta + 15 ^ { \circ } \right) } { \cos \left( 6 \theta - 15 ^ { \circ } \right) + 3 \cos 6 \theta + \cos \left( 6 \theta + 15 ^ { \circ } \right) } = k .$$
OCR C3 2015 June Q9
13 marks Standard +0.8
9 It is given that \(\mathrm { f } ( \theta ) = \sin \left( \theta + 30 ^ { \circ } \right) + \cos \left( \theta + 60 ^ { \circ } \right)\).
  1. Show that \(\mathrm { f } ( \theta ) = \cos \theta\). Hence show that $$f ( 4 \theta ) + 4 f ( 2 \theta ) \equiv 8 \cos ^ { 4 } \theta - 3 .$$
  2. Hence
    (a) determine the greatest and least values of \(\frac { 1 } { \mathrm { f } ( 4 \theta ) + 4 \mathrm { f } ( 2 \theta ) + 7 }\) as \(\theta\) varies,
    (b) solve the equation $$\sin \left( 12 \alpha + 30 ^ { \circ } \right) + \cos \left( 12 \alpha + 60 ^ { \circ } \right) + 4 \sin \left( 6 \alpha + 30 ^ { \circ } \right) + 4 \cos \left( 6 \alpha + 60 ^ { \circ } \right) = 1$$ for \(0 ^ { \circ } < \alpha < 60 ^ { \circ }\). \section*{END OF QUESTION PAPER}
Edexcel C3 Q5
8 marks Standard +0.3
5. (i) Given that \(\sin x = \frac { 3 } { 5 }\), use an appropriate double angle formula to find the exact value of \(\sec 2 x\).
(ii) Prove that $$\cot 2 x + \operatorname { cosec } 2 x \equiv \cot x , \quad \left( x \neq \frac { n \pi } { 2 } , n \in Z \right)$$
Edexcel C4 Q8
13 marks Standard +0.3
8. (i) Given that \(\cos ( x + 30 ) ^ { \circ } = 3 \cos ( x - 30 ) ^ { \circ }\), prove that tan \(x ^ { \circ } = - \frac { \sqrt { 3 } } { 2 }\).
(ii) (a) Prove that \(\frac { 1 - \cos 2 \theta } { \sin 2 \theta } \equiv \tan \theta\).
(b) Verify that \(\theta = 180 ^ { \circ }\) is a solution of the equation \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).
(c) Using the result in part (a), or otherwise, find the other two solutions, \(0 < \theta < 360 ^ { \circ }\), of the equation using \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).
AQA FP2 2008 January Q6
14 marks Challenging +1.2
6
    1. By applying De Moivre's theorem to \(( \cos \theta + \mathrm { i } \sin \theta ) ^ { 3 }\), show that $$\cos 3 \theta = \cos ^ { 3 } \theta - 3 \cos \theta \sin ^ { 2 } \theta$$
    2. Find a similar expression for \(\sin 3 \theta\).
    3. Deduce that $$\tan 3 \theta = \frac { \tan ^ { 3 } \theta - 3 \tan \theta } { 3 \tan ^ { 2 } \theta - 1 }$$
    1. Hence show that \(\tan \frac { \pi } { 12 }\) is a root of the cubic equation $$x ^ { 3 } - 3 x ^ { 2 } - 3 x + 1 = 0$$
    2. Find two other values of \(\theta\), where \(0 < \theta < \pi\), for which \(\tan \theta\) is a root of this cubic equation.
  1. Hence show that $$\tan \frac { \pi } { 12 } + \tan \frac { 5 \pi } { 12 } = 4$$
Edexcel AEA 2024 June Q3
14 marks Challenging +1.8
3.(i)Determine the value of \(k\) such that $$\arctan \frac { 1 } { 2 } - \arctan \frac { 1 } { 3 } = \arctan k$$ (ii)(a)Prove that $$\cos 3 A \equiv 4 \cos ^ { 3 } A - 3 \cos A$$ Given that \(a = \cos 20 ^ { \circ }\)
(b)write down,in terms of \(a\) ,an expression for \(\cos 40 ^ { \circ }\)
(c)determine,in terms of \(a\) ,a simplified expression for \(\cos 80 ^ { \circ }\)
(d)Use part(a)to show that $$4 a ^ { 3 } - 3 a = \frac { 1 } { 2 }$$ (e)Hence,or otherwise,show that $$\cos 20 ^ { \circ } \cos 40 ^ { \circ } \cos 80 ^ { \circ } = \frac { 1 } { 8 }$$