A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q9
OCR C3 2011 June — Question 9
Exam Board
OCR
Module
C3 (Core Mathematics 3)
Year
2011
Session
June
Topic
Addition & Double Angle Formulae
9
Prove that \(\frac { \sin ( \theta - \alpha ) + 3 \sin \theta + \sin ( \theta + \alpha ) } { \cos ( \theta - \alpha ) + 3 \cos \theta + \cos ( \theta + \alpha ) } \equiv \tan \theta\) for all values of \(\alpha\).
Find the exact value of \(\frac { 4 \sin 149 ^ { \circ } + 12 \sin 150 ^ { \circ } + 4 \sin 151 ^ { \circ } } { 3 \cos 149 ^ { \circ } + 9 \cos 150 ^ { \circ } + 3 \cos 151 ^ { \circ } }\).
It is given that \(k\) is a positive constant. Solve, for \(0 ^ { \circ } < \theta < 60 ^ { \circ }\) and in terms of \(k\), the equation $$\frac { \sin \left( 6 \theta - 15 ^ { \circ } \right) + 3 \sin 6 \theta + \sin \left( 6 \theta + 15 ^ { \circ } \right) } { \cos \left( 6 \theta - 15 ^ { \circ } \right) + 3 \cos 6 \theta + \cos \left( 6 \theta + 15 ^ { \circ } \right) } = k .$$
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9