OCR C3 2011 June — Question 9

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
Year2011
SessionJune
TopicAddition & Double Angle Formulae

9
  1. Prove that \(\frac { \sin ( \theta - \alpha ) + 3 \sin \theta + \sin ( \theta + \alpha ) } { \cos ( \theta - \alpha ) + 3 \cos \theta + \cos ( \theta + \alpha ) } \equiv \tan \theta\) for all values of \(\alpha\).
  2. Find the exact value of \(\frac { 4 \sin 149 ^ { \circ } + 12 \sin 150 ^ { \circ } + 4 \sin 151 ^ { \circ } } { 3 \cos 149 ^ { \circ } + 9 \cos 150 ^ { \circ } + 3 \cos 151 ^ { \circ } }\).
  3. It is given that \(k\) is a positive constant. Solve, for \(0 ^ { \circ } < \theta < 60 ^ { \circ }\) and in terms of \(k\), the equation $$\frac { \sin \left( 6 \theta - 15 ^ { \circ } \right) + 3 \sin 6 \theta + \sin \left( 6 \theta + 15 ^ { \circ } \right) } { \cos \left( 6 \theta - 15 ^ { \circ } \right) + 3 \cos 6 \theta + \cos \left( 6 \theta + 15 ^ { \circ } \right) } = k .$$