| Exam Board | Edexcel |
| Module | C4 (Core Mathematics 4) |
| Topic | Addition & Double Angle Formulae |
8. (i) Given that \(\cos ( x + 30 ) ^ { \circ } = 3 \cos ( x - 30 ) ^ { \circ }\), prove that tan \(x ^ { \circ } = - \frac { \sqrt { 3 } } { 2 }\).
(ii) (a) Prove that \(\frac { 1 - \cos 2 \theta } { \sin 2 \theta } \equiv \tan \theta\).
(b) Verify that \(\theta = 180 ^ { \circ }\) is a solution of the equation \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).
(c) Using the result in part (a), or otherwise, find the other two solutions, \(0 < \theta < 360 ^ { \circ }\), of the equation using \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).