Edexcel AEA 2019 June — Question 4

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2019
SessionJune
TopicAddition & Double Angle Formulae

4.(a)Prove the identity $$( \sin x + \cos y ) \cos ( x - y ) \equiv ( 1 + \sin ( x - y ) ) ( \cos x + \sin y )$$ (b)Hence,or otherwise,show that $$\frac { \sin 5 \theta + \cos 3 \theta } { \cos 5 \theta + \sin 3 \theta } \equiv \frac { 1 + \tan \theta } { 1 - \tan \theta }$$ (c)Given that \(k > 1\) ,show that the equation \(\frac { \sin 5 \theta + \cos 3 \theta } { \cos 5 \theta + \sin 3 \theta } = k\) has a unique solution in the interval \(0 < \theta < \frac { \pi } { 4 }\)