OCR C3 2007 June — Question 9

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
Year2007
SessionJune
TopicAddition & Double Angle Formulae

9
  1. Prove the identity $$\tan \left( \theta + 60 ^ { \circ } \right) \tan \left( \theta - 60 ^ { \circ } \right) \equiv \frac { \tan ^ { 2 } \theta - 3 } { 1 - 3 \tan ^ { 2 } \theta }$$
  2. Solve, for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\), the equation $$\tan \left( \theta + 60 ^ { \circ } \right) \tan \left( \theta - 60 ^ { \circ } \right) = 4 \sec ^ { 2 } \theta - 3 ,$$ giving your answers correct to the nearest \(0.1 ^ { \circ }\).
  3. Show that, for all values of the constant k , the equation $$\tan \left( \theta + 60 ^ { \circ } \right) \tan \left( \theta - 60 ^ { \circ } \right) = \mathrm { K } ^ { 2 }$$ has two roots in the interval \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).