| Exam Board | Edexcel |
| Module | C3 (Core Mathematics 3) |
| Year | 2014 |
| Session | January |
| Topic | Addition & Double Angle Formulae |
7. (i) (a) Prove that
$$\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta$$
(You may use the double angle formulae and the identity
$$\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B )$$
(b) Hence solve the equation
$$2 \cos 3 \theta + \cos 2 \theta + 1 = 0$$
giving answers in the interval \(0 \leqslant \theta \leqslant \pi\).
Solutions based entirely on graphical or numerical methods are not acceptable.
(ii) Given that \(\theta = \arcsin x\) and that \(0 < \theta < \frac { \pi } { 2 }\), show that
$$\cot \theta = \frac { \sqrt { \left( 1 - x ^ { 2 } \right) } } { x } , \quad 0 < x < 1$$