Edexcel C3 2014 January — Question 7

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2014
SessionJanuary
TopicAddition & Double Angle Formulae

7. (i) (a) Prove that $$\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta$$ (You may use the double angle formulae and the identity $$\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B )$$ (b) Hence solve the equation $$2 \cos 3 \theta + \cos 2 \theta + 1 = 0$$ giving answers in the interval \(0 \leqslant \theta \leqslant \pi\).
Solutions based entirely on graphical or numerical methods are not acceptable.
(ii) Given that \(\theta = \arcsin x\) and that \(0 < \theta < \frac { \pi } { 2 }\), show that $$\cot \theta = \frac { \sqrt { \left( 1 - x ^ { 2 } \right) } } { x } , \quad 0 < x < 1$$