| Exam Board | Edexcel |
| Module | C3 (Core Mathematics 3) |
| Year | 2009 |
| Session | January |
| Topic | Addition & Double Angle Formulae |
6. (a) (i) By writing \(3 \theta = ( 2 \theta + \theta )\), show that
$$\sin 3 \theta = 3 \sin \theta - 4 \sin ^ { 3 } \theta$$
(ii) Hence, or otherwise, for \(0 < \theta < \frac { \pi } { 3 }\), solve
$$8 \sin ^ { 3 } \theta - 6 \sin \theta + 1 = 0 .$$
Give your answers in terms of \(\pi\).
(b) Using \(\sin ( \theta - \alpha ) = \sin \theta \cos \alpha - \cos \theta \sin \alpha\), or otherwise, show that
$$\sin 15 ^ { \circ } = \frac { 1 } { 4 } ( \sqrt { } 6 - \sqrt { } 2 )$$