A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q9
CAIE P3 2019 November — Question 9
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2019
Session
November
Topic
Addition & Double Angle Formulae
9
By first expanding \(\cos ( 2 x + x )\), show that \(\cos 3 x \equiv 4 \cos ^ { 3 } x - 3 \cos x\).
Hence solve the equation \(\cos 3 x + 3 \cos x + 1 = 0\), for \(0 \leqslant x \leqslant \pi\).
Find the exact value of \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 3 } \pi } \cos ^ { 3 } x \mathrm {~d} x\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
5