A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q6
CAIE P2 2020 June — Question 6
Exam Board
CAIE
Module
P2 (Pure Mathematics 2)
Year
2020
Session
June
Topic
Addition & Double Angle Formulae
6
Prove that $$\sin 2 \theta ( \operatorname { cosec } \theta - \sec \theta ) \equiv \sqrt { 8 } \cos \left( \theta + \frac { 1 } { 4 } \pi \right)$$
Solve the equation $$\sin 2 \theta ( \operatorname { cosec } \theta - \sec \theta ) = 1$$ for \(0 < \theta < \frac { 1 } { 2 } \pi\). Give the answer correct to 3 significant figures.
Find \(\int \sin x \left( \operatorname { cosec } \frac { 1 } { 2 } x - \sec \frac { 1 } { 2 } x \right) \mathrm { d } x\).
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7