OCR FP3 2007 January — Question 8

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2007
SessionJanuary
TopicComplex numbers 2

8
  1. Use de Moivre's theorem to find an expression for \(\tan 4 \theta\) in terms of \(\tan \theta\).
  2. Deduce that \(\cot 4 \theta = \frac { \cot ^ { 4 } \theta - 6 \cot ^ { 2 } \theta + 1 } { 4 \cot ^ { 3 } \theta - 4 \cot \theta }\).
  3. Hence show that one of the roots of the equation \(x ^ { 2 } - 6 x + 1 = 0\) is \(\cot ^ { 2 } \left( \frac { 1 } { 8 } \pi \right)\).
  4. Hence find the value of \(\operatorname { cosec } ^ { 2 } \left( \frac { 1 } { 8 } \pi \right) + \operatorname { cosec } ^ { 2 } \left( \frac { 3 } { 8 } \pi \right)\), justifying your answer.