OCR FP3 2009 June — Question 7

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2009
SessionJune
TopicComplex numbers 2

7
  1. Use de Moivre's theorem to prove that $$\tan 3 \theta \equiv \frac { \tan \theta \left( 3 - \tan ^ { 2 } \theta \right) } { 1 - 3 \tan ^ { 2 } \theta } .$$
  2. (a) By putting \(\theta = \frac { 1 } { 12 } \pi\) in the identity in part (i), show that \(\tan \frac { 1 } { 12 } \pi\) is a solution of the equation $$t ^ { 3 } - 3 t ^ { 2 } - 3 t + 1 = 0 .$$ (b) Hence show that \(\tan \frac { 1 } { 12 } \pi = 2 - \sqrt { 3 }\).
  3. Use the substitution \(t = \tan \theta\) to show that $$\int _ { 0 } ^ { 2 - \sqrt { 3 } } \frac { t \left( 3 - t ^ { 2 } \right) } { \left( 1 - 3 t ^ { 2 } \right) \left( 1 + t ^ { 2 } \right) } \mathrm { d } t = a \ln b$$ where \(a\) and \(b\) are positive constants to be determined.