Solve the equation \(\tan 5 \theta = 1\), for \(0 \leqslant \theta < \pi\).
Show that the roots of the equation
$$t ^ { 4 } - 4 t ^ { 3 } - 14 t ^ { 2 } - 4 t + 1 = 0$$
may be expressed in the form \(\tan \alpha\), stating the exact values of \(\alpha\), where \(0 \leqslant \alpha < \pi\).
\section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE}