OCR FP3 2012 January — Question 8

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2012
SessionJanuary
TopicComplex numbers 2

8
  1. Use de Moivre's theorem to prove that $$\tan 5 \theta \equiv \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta } .$$
  2. Solve the equation \(\tan 5 \theta = 1\), for \(0 \leqslant \theta < \pi\).
  3. Show that the roots of the equation $$t ^ { 4 } - 4 t ^ { 3 } - 14 t ^ { 2 } - 4 t + 1 = 0$$ may be expressed in the form \(\tan \alpha\), stating the exact values of \(\alpha\), where \(0 \leqslant \alpha < \pi\). \section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE}