Proof by induction

258 questions · 16 question types identified

Sort by: Question count | Difficulty
Prove divisibility

A question is this type if and only if it asks to prove by induction that an expression involving powers (e.g., 7²ⁿ - 1, 5ⁿ + 8n + 3) is divisible by a given integer.

49 Standard +0.3
19.0% of questions
Show example »
7 Prove that \(2 ^ { 3 n } - 3 ^ { n }\) is divisible by 5 for all integers \(n \geqslant 1\).
View full question →
Easiest question Moderate -0.5 »
2 Prove, by mathematical induction, that \(5 ^ { n } + 3\) is divisible by 4 for all non-negative integers \(n\).
View full question →
Hardest question Standard +0.8 »
2 Prove by mathematical induction that \(6 ^ { 4 n } + 38 ^ { n } - 2\) is divisible by 74 for all positive integers \(n\).
View full question →
Prove recurrence relation formula

A question is this type if and only if it asks to prove by induction that a sequence defined by a recurrence relation (uₙ₊₁ in terms of uₙ) equals a given explicit formula for uₙ.

37 Standard +0.5
14.3% of questions
Show example »
6 A sequence is defined by \(u _ { 1 } = 5\) and \(u _ { n + 1 } = u _ { n } + 2 ^ { n + 1 }\). Prove by induction that \(u _ { n } = 2 ^ { n + 1 } + 1\).
View full question →
Easiest question Moderate -0.3 »
1 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } = 4\) and \(u _ { n + 1 } = 3 u _ { n } - 2\) for \(n \geqslant 1\).
Prove by induction that \(u _ { n } = 3 ^ { n } + 1\) for all positive integers \(n\).
View full question →
Hardest question Challenging +1.2 »
9. (i) A sequence of numbers is defined by $$\begin{gathered} u _ { 1 } = 0 \quad u _ { 2 } = - 6 \\ u _ { n + 2 } = 5 u _ { n + 1 } - 6 u _ { n } \quad n \geqslant 1 \end{gathered}$$ Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\) $$u _ { n } = 3 \times 2 ^ { n } - 2 \times 3 ^ { n }$$ (ii) Prove by induction that, for all positive integers \(n\), $$f ( n ) = 3 ^ { 3 n - 2 } + 2 ^ { 4 n - 1 }$$ is divisible by 11
\includegraphics[max width=\textwidth, alt={}]{41065a55-38c3-4b16-a02d-ece9f02ef32c-36_2820_1967_102_100}
View full question →
Prove summation formula

A question is this type if and only if it asks to prove by induction that a summation equals a given closed-form expression (e.g., ∑r² = n(n+1)(2n+1)/6).

34 Standard +0.3
13.2% of questions
Show example »
5. Prove that $$\sum _ { r = 1 } ^ { n } 6 \left( r ^ { 2 } - 1 \right) \equiv ( n - 1 ) n ( 2 n + 5 )$$
View full question →
Easiest question Moderate -0.5 »
6 Prove by induction that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\).
View full question →
Hardest question Challenging +1.2 »
Prove by induction that $$\sum _ { n = 1 } ^ { N } n ^ { 3 } = \frac { 1 } { 4 } N ^ { 2 } ( N + 1 ) ^ { 2 }$$ Use this result, together with the formula for \(\sum _ { n = 1 } ^ { N } n ^ { 2 }\), to show that $$\sum _ { n = 1 } ^ { N } \left( 20 n ^ { 3 } + 36 n ^ { 2 } \right) = N ( N + 1 ) ( N + 3 ) ( 5 N + 2 ) .$$ Let $$S _ { N } = \sum _ { n = 1 } ^ { N } \left( 20 n ^ { 3 } + 36 n ^ { 2 } + \mu n \right)$$ Find the value of the constant \(\mu\) such that \(S _ { N }\) is of the form \(N ^ { 2 } ( N + 1 ) ( a N + b )\), where the constants \(a\) and \(b\) are to be determined. Show that, for this value of \(\mu\), $$5 + \frac { 22 } { N } < N ^ { - 4 } S _ { N } < 5 + \frac { 23 } { N }$$ for all \(N \geqslant 18\).
View full question →
Prove matrix power formula

A question is this type if and only if it asks to prove by induction that Aⁿ equals a given matrix expression involving n.

19 Standard +0.4
7.4% of questions
Show example »
8 Prove by induction that \(\left( \begin{array} { l l } 1 & 1 \\ 0 & 2 \end{array} \right) ^ { n } = \left( \begin{array} { c c } 1 & 2 ^ { n } - 1 \\ 0 & 2 ^ { n } \end{array} \right)\) for all positive integers \(n\).
View full question →
Easiest question Standard +0.3 »
5 Let \(\mathbf { A } = \left( \begin{array} { l l } 1 & a \\ 0 & 1 \end{array} \right)\), where \(a\) is a positive constant.
  1. State the type of the geometrical transformation in the \(x - y\) plane represented by \(\mathbf { A }\).
  2. Prove by mathematical induction that, for all positive integers \(n\), $$\mathbf { A } ^ { \mathrm { n } } = \left( \begin{array} { c c } 1 & \mathrm { na } \\ 0 & 1 \end{array} \right)$$ Let \(\mathbf { B } = \left( \begin{array} { c c } b & b \\ a ^ { - 1 } & a ^ { - 1 } \end{array} \right)\), where \(b\) is a positive constant.
  3. Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { A } ^ { n } \mathbf { B }\).
View full question →
Hardest question Standard +0.8 »
  1. (i) Prove by induction that for \(n \in \mathbb { Z } ^ { + }\)
$$\left( \begin{array} { r r } 5 & - 1 \\ 4 & 1 \end{array} \right) ^ { n } = 3 ^ { n - 1 } \left( \begin{array} { c c } 2 n + 3 & - n \\ 4 n & 3 - 2 n \end{array} \right)$$ (ii) Prove by induction that for \(n \in \mathbb { Z } ^ { + }\) $$f ( n ) = 8 ^ { 2 n + 1 } + 6 ^ { 2 n - 1 }$$ is divisible by 7
View full question →
Prove summation with exponentials

A question is this type if and only if it asks to prove by induction a summation formula involving exponential or geometric terms (e.g., ∑r·2ʳ⁻¹, ∑4r/3ʳ).

18 Standard +0.6
7.0% of questions
Show example »
6 Prove by induction that \(\sum _ { r = 1 } ^ { n } r 2 ^ { r - 1 } = 1 + ( n - 1 ) 2 ^ { n }\).
View full question →
Easiest question Moderate -0.3 »
7 Prove by induction that \(\sum _ { r = 1 } ^ { n } 3 ^ { r - 1 } = \frac { 3 ^ { n } - 1 } { 2 }\).
View full question →
Hardest question Challenging +1.2 »
8
  1. Prove by mathematical induction that, for \(z \neq 1\) and all positive integers \(n\), $$1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 } = \frac { z ^ { n } - 1 } { z - 1 }$$
  2. By letting \(z = \frac { 1 } { 2 } ( \cos \theta + \mathrm { i } \sin \theta )\), use de Moivre's theorem to deduce that $$\sum _ { m = 1 } ^ { \infty } \left( \frac { 1 } { 2 } \right) ^ { m } \sin m \theta = \frac { 2 \sin \theta } { 5 - 4 \cos \theta }$$
View full question →
Prove derivative formula

A question is this type if and only if it asks to prove by induction that the nth derivative of a function equals a given expression.

17 Challenging +1.2
6.6% of questions
Show example »
5 Prove by mathematical induction that, for every positive integer \(n\), $$\frac { d ^ { 2 n - 1 } } { d x ^ { 2 n - 1 } } ( x \sin x ) = ( - 1 ) ^ { n - 1 } ( x \cos x + ( 2 n - 1 ) \sin x )$$
View full question →
Easiest question Standard +0.8 »
8
- 2 \end{array} \right) .$$ 6 It is given that \(y = \mathrm { e } ^ { x } u\), where \(u\) is a function of \(x\). The \(r\) th derivatives \(\frac { \mathrm { d } ^ { r } y } { \mathrm {~d} x ^ { r } }\) and \(\frac { \mathrm { d } ^ { r } u } { \mathrm {~d} x ^ { r } }\) are denoted by \(y ^ { ( r ) }\) and \(u ^ { ( r ) }\) respectively. Prove by mathematical induction that, for all positive integers \(n\), $$y ^ { ( n ) } = \mathrm { e } ^ { x } \left( \binom { n } { 0 } u + \binom { n } { 1 } u ^ { ( 1 ) } + \binom { n } { 2 } u ^ { ( 2 ) } + \ldots + \binom { n } { r } u ^ { ( r ) } + \ldots + \binom { n } { n } u ^ { ( n ) } \right)$$ [You may use without proof the result \(\binom { k } { r } + \binom { k } { r - 1 } = \binom { k + 1 } { r }\).]\\ 7 Let $$S _ { N } = \sum _ { r = 1 } ^ { N } ( 3 r + 1 ) ( 3 r + 4 ) \quad \text { and } \quad T _ { N } = \sum _ { r = 1 } ^ { N } \frac { 1 } { ( 3 r + 1 ) ( 3 r + 4 ) } .$$
  1. Use standard results from the List of Formulae (MF10) to show that $$S _ { N } = N \left( 3 N ^ { 2 } + 12 N + 13 \right)$$
  2. Use the method of differences to show that $$T _ { N } = \frac { 1 } { 12 } - \frac { 1 } { 3 ( 3 N + 4 ) } .$$
  3. Deduce that \(\frac { S _ { N } } { T _ { N } }\) is an integer.
  4. Find \(\lim _ { N \rightarrow \infty } \frac { S _ { N } } { N ^ { 3 } T _ { N } }\).\\ 8
  5. By considering the binomial expansion of \(\left( z + \frac { 1 } { z } \right) ^ { 6 }\), where \(z = \cos \theta + i \sin \theta\), express \(\cos ^ { 6 } \theta\) in the form $$\frac { 1 } { 32 } ( p + q \cos 2 \theta + r \cos 4 \theta + s \cos 6 \theta ) ,$$ where \(p , q , r\) and \(s\) are integers to be determined.
  6. Hence find the exact value of $$\int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \cos ^ { 6 } \left( \frac { 1 } { 2 } x \right) \mathrm { d } x$$
View full question →
Hardest question Challenging +1.8 »
2 Prove by mathematical induction that, for all positive integers \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \tan ^ { - 1 } x \right) = P _ { n } ( x ) \left( 1 + x ^ { 2 } \right) ^ { - n } ,$$ where \(P _ { n } ( x )\) is a polynomial of degree \(n - 1\). \includegraphics[max width=\textwidth, alt={}, center]{99ac7fe2-184b-4a72-89f6-03fe4b2af138-05_2726_35_97_20}
View full question →
Prove summation with fractions

A question is this type if and only if it asks to prove by induction a summation formula where terms are rational expressions (e.g., ∑1/(r(r+1)), ∑(2r+1)/(r²(r+1)²)).

14 Standard +0.6
5.4% of questions
Show example »
6 Prove by induction that \(\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) } = \frac { n } { n + 1 }\).
View full question →
Easiest question Standard +0.3 »
4. Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\), $$\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) } = \frac { n } { n + 1 }$$
View full question →
Hardest question Challenging +1.2 »
9 Use induction to prove that $$\sum _ { n = 1 } ^ { N } \frac { 4 n + 1 } { n ( n + 1 ) ( 2 n - 1 ) ( 2 n + 1 ) } = 1 - \frac { 1 } { ( N + 1 ) ( 2 N + 1 ) }$$ Show that $$\sum _ { n = N + 1 } ^ { 2 N } \frac { 4 n + 1 } { n ( n + 1 ) ( 2 n - 1 ) ( 2 n + 1 ) } < \frac { 3 } { 8 N ^ { 2 } }$$
View full question →
Prove inequality by induction

A question is this type if and only if it asks to prove by induction that an inequality holds for all positive integers n (e.g., uₙ > 4, 4ⁿ > 2ⁿ + 3ⁿ).

14 Standard +0.8
5.4% of questions
Show example »
8 Prove that \(n ! > 2 ^ { n }\) for \(n \geq 4\).
View full question →
Easiest question Standard +0.3 »
2 Prove, by mathematical induction, that, for integers \(n \geqslant 2\), $$4 ^ { n } > 2 ^ { n } + 3 ^ { n }$$
View full question →
Hardest question Challenging +1.8 »
3 The sequence of real numbers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that \(a _ { 1 } = 1\) and $$a _ { n + 1 } = \left( a _ { n } + \frac { 1 } { a _ { n } } \right) ^ { 3 }$$
  1. Prove by mathematical induction that \(\ln a _ { n } \geqslant 3 ^ { n - 1 } \ln 2\) for all integers \(n \geqslant 2\).
    [0pt] [You may use the fact that \(\ln \left( x + \frac { 1 } { x } \right) > \ln x\) for \(x > 0\).]
  2. Show that \(\ln \mathrm { a } _ { \mathrm { n } + 1 } - \ln \mathrm { a } _ { \mathrm { n } } > 3 ^ { \mathrm { n } - 1 } \ln 4\) for \(n \geqslant 2\).
View full question →
Suggest and prove formula

A question is this type if and only if it asks to first calculate initial terms, suggest a formula for uₙ, then prove the suggestion by induction.

8 Standard +0.7
3.1% of questions
Show example »
8 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by \(u _ { 1 } = 1\) and \(u _ { n + 1 } = u _ { n } + 2 n + 1\).
  1. Show that \(u _ { 4 } = 16\).
  2. Hence suggest an expression for \(u _ { n }\).
  3. Use induction to prove that your answer to part (ii) is correct.
View full question →
Prove sequence property via recurrence

A question is this type if and only if it asks to prove by induction that every term of a sequence has a certain property (e.g., divisibility, being greater than a value) by analyzing uₙ₊₁ - uₙ or similar.

8 Standard +0.5
3.1% of questions
Show example »
3 It is given that, for \(n = 0,1,2,3 , \ldots\), $$a _ { n } = 17 ^ { 2 n } + 3 ( 9 ) ^ { n } + 20$$ Simplify \(a _ { n + 1 } - a _ { n }\), and hence prove by induction that \(a _ { n }\) is divisible by 24 for all \(n \geqslant 0\).
View full question →
Use standard formulae to show result

A question is this type if and only if it asks to show (not prove by induction) a summation result using already-known standard formulae for ∑r, ∑r², ∑r³.

6 Moderate -0.1
2.3% of questions
Show example »
8
  1. Use standard series formulae to show that $$\sum _ { r = 1 } ^ { n } [ r ( r - 1 ) - 1 ] = \frac { 1 } { 3 } n ( n + 2 ) ( n - 2 )$$
  2. Prove (*) by mathematical induction.
View full question →
Prove polynomial divisibility property

A question is this type if and only if it asks to prove (by factorization or other means, not necessarily induction) that a polynomial expression is divisible by an integer for all integer n.

5 Standard +0.0
1.9% of questions
Show example »
3 Prove by mathematical induction that, for all integers \(n \geqslant 1 , n ^ { 5 } - n\) is divisible by 5 .
View full question →
Prove by exhaustion (cases)

A question is this type if and only if it asks to prove a result by exhaustion (considering all cases modulo some integer) rather than by induction.

4 Standard +0.1
1.6% of questions
Show example »
7 Prove by induction that the sum of the cubes of three consecutive positive integers is divisible by 9 .
View full question →
Prove de Moivre's theorem

A question is this type if and only if it asks to prove by induction that (cos θ + i sin θ)ⁿ = cos nθ + i sin nθ.

4 Challenging +1.1
1.6% of questions
Show example »
9 Prove by mathematical induction that, for every positive integer \(n\), $$( \cos \theta + i \sin \theta ) ^ { n } = \cos n \theta + i \sin n \theta$$ Express \(\sin ^ { 5 } \theta\) in the form \(p \sin 5 \theta + q \sin 3 \theta + r \sin \theta\), where \(p , q\) and \(r\) are rational numbers to be determined.
View full question →
Prove summation with logarithms

A question is this type if and only if it asks to prove by induction a summation formula involving logarithmic terms (e.g., ∑log(2r-1), ∑r·ln((r+1)/r)).

2 Challenging +1.0
0.8% of questions
Show example »
3 Prove, by mathematical induction, that \(\sum _ { r = 1 } ^ { n } r \ln \left( \frac { r + 1 } { r } \right) = \ln \left( \frac { ( n + 1 ) ^ { n } } { n ! } \right)\) for all positive integers \(n\). [6]
View full question →
Deduce result from proven formula

A question is this type if and only if it asks to deduce or show a secondary result using a formula already proven by induction in an earlier part.

0
0.0% of questions
Show example »
8. The points \(P , Q\) and \(R\) have coordinates \(( - 5,2 ) , ( - 3,8 )\) and \(( 9,4 )\) respectively.
  1. Show that \(\angle P Q R = 90 ^ { \circ }\). Given that \(P , Q\) and \(R\) all lie on circle \(C\),
  2. find the coordinates of the centre of \(C\),
  3. show that the equation of \(C\) can be written in the form $$x ^ { 2 } + y ^ { 2 } + a x + b y = k$$ where \(a , b\) and \(k\) are integers to be found.
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
View full question →
Unclassified

Questions not yet assigned to a type.

19
7.4% of questions
Show 19 unclassified »
1 Prove by mathematical induction that \(2 ^ { 4 n } + 31 ^ { n } - 2\) is divisible by 15 for all positive integers \(n\).
1 Let \(\mathbf { A } = \left( \begin{array} { l l } 3 & 0 \\ 1 & 1 \end{array} \right)\).
  1. Prove by mathematical induction that, for all positive integers \(n\), $$2 \mathbf { A } ^ { n } = \left( \begin{array} { l l } 2 \times 3 ^ { n } & 0 \\ 3 ^ { n } - 1 & 2 \end{array} \right)$$
  2. Find, in terms of \(n\), the inverse of \(\mathbf { A } ^ { n }\).
2 Prove by mathematical induction that \(6 ^ { 4 n } + 38 ^ { n } - 2\) is divisible by 74 for all positive integers \(n\).
5 Prove by mathematical induction that, for every positive integer \(n\), $$\frac { d ^ { 2 n - 1 } } { d x ^ { 2 n - 1 } } ( x \sin x ) = ( - 1 ) ^ { n - 1 } ( x \cos x + ( 2 n - 1 ) \sin x )$$
2 Prove by mathematical induction that, for all positive integers \(n , 7 ^ { 2 n } + 97 ^ { n } - 50\) is divisible by 48. [6]
2 Prove by mathematical induction that, for all positive integers \(n\), $$1 + 2 x + 3 x ^ { 2 } + \ldots + n x ^ { n - 1 } = \frac { 1 - ( n + 1 ) x ^ { n } + n x ^ { n + 1 } } { ( 1 - x ) ^ { 2 } }$$
4 It is given that \(\mathrm { f } ( n ) = 3 ^ { 3 n } + 6 ^ { n - 1 }\).
  1. Show that \(\mathrm { f } ( n + 1 ) + \mathrm { f } ( n ) = 28 \left( 3 ^ { 3 n } \right) + 7 \left( 6 ^ { n - 1 } \right)\).
  2. Hence, or otherwise, prove by mathematical induction that \(\mathrm { f } ( n )\) is divisible by 7 for every positive integer \(n\).
2 Prove by mathematical induction that \(5 ^ { 2 n } - 1\) is divisible by 8 for every positive integer \(n\).
3 Prove by mathematical induction that, for all non-negative integers \(n\), $$11 ^ { 2 n } + 25 ^ { n } + 22$$ is divisible by 24 .
3 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that \(a _ { 1 } > 5\) and \(a _ { n + 1 } = \frac { 4 a _ { n } } { 5 } + \frac { 5 } { a _ { n } }\) for every positive integer \(n\).
Prove by mathematical induction that \(a _ { n } > 5\) for every positive integer \(n\). Prove also that \(a _ { n } > a _ { n + 1 }\) for every positive integer \(n\).
2 Prove, by mathematical induction, that \(5 ^ { n } + 3\) is divisible by 4 for all non-negative integers \(n\).
2 It is given that \(\mathrm { f } ( n ) = 2 ^ { 3 n } + 8 ^ { n - 1 }\). By simplifying \(\mathrm { f } ( k ) + \mathrm { f } ( k + 1 )\), or otherwise, prove by mathematical induction that \(\mathrm { f } ( n )\) is divisible by 9 for every positive integer \(n\).
8
  1. Prove by mathematical induction that, for \(z \neq 1\) and all positive integers \(n\), $$1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 } = \frac { z ^ { n } - 1 } { z - 1 }$$
  2. By letting \(z = \frac { 1 } { 2 } ( \cos \theta + \mathrm { i } \sin \theta )\), use de Moivre's theorem to deduce that $$\sum _ { m = 1 } ^ { \infty } \left( \frac { 1 } { 2 } \right) ^ { m } \sin m \theta = \frac { 2 \sin \theta } { 5 - 4 \cos \theta }$$
3 Prove by mathematical induction that, for all positive integers \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x } \sin x \right) = 2 ^ { \frac { 1 } { 2 } n } \mathrm { e } ^ { x } \sin \left( x + \frac { 1 } { 4 } n \pi \right)$$
3 It is given that \(u _ { r } = r \times r !\) for \(r = 1,2,3 , \ldots\). Let \(S _ { n } = u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots + u _ { n }\). Write down the values of $$2 ! - S _ { 1 } , \quad 3 ! - S _ { 2 } , \quad 4 ! - S _ { 3 } , \quad 5 ! - S _ { 4 }$$ Conjecture a formula for \(S _ { n }\). Prove, by mathematical induction, a formula for \(S _ { n }\), for all positive integers \(n\).
3 Given that \(a\) is a constant, prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( x \mathrm { e } ^ { a x } \right) = n a ^ { n - 1 } \mathrm { e } ^ { a x } + a ^ { n } x \mathrm { e } ^ { a x }$$
2 It is given that \(y = \ln ( a x + 1 )\), where \(a\) is a positive constant. Prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } } = ( - 1 ) ^ { n - 1 } \frac { ( n - 1 ) ! a ^ { n } } { ( a x + 1 ) ^ { n } }$$
2 It is given that \(y = \ln ( a x + 1 )\), where \(a\) is a positive constant. Prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } } = ( - 1 ) ^ { n - 1 } \frac { ( n - 1 ) ! a ^ { n } } { ( a x + 1 ) ^ { n } }$$
6 Prove by induction that \(\sum _ { r = 1 } ^ { n } r 2 ^ { r - 1 } = 1 + ( n - 1 ) 2 ^ { n }\).