Edexcel
FP2
2013
June
Q4
7 marks
Standard +0.8
4. (a) Given that
$$z = r ( \cos \theta + \mathrm { i } \sin \theta ) , \quad r \in \mathbb { R }$$
prove, by induction, that \(z ^ { n } = r ^ { n } ( \cos n \theta + \mathrm { i } \sin n \theta ) , \quad n \in \mathbb { Z } ^ { + }\)
$$w = 3 \left( \cos \frac { 3 \pi } { 4 } + i \sin \frac { 3 \pi } { 4 } \right)$$
(b) Find the exact value of \(w ^ { 5 }\), giving your answer in the form \(a + \mathrm { i } b\), where \(a , b \in \mathbb { R }\).
CAIE
FP1
2013
November
Q9
11 marks
Challenging +1.2
9 Prove by mathematical induction that, for every positive integer \(n\),
$$( \cos \theta + i \sin \theta ) ^ { n } = \cos n \theta + i \sin n \theta$$
Express \(\sin ^ { 5 } \theta\) in the form \(p \sin 5 \theta + q \sin 3 \theta + r \sin \theta\), where \(p , q\) and \(r\) are rational numbers to be determined.