Prove summation with fractions

A question is this type if and only if it asks to prove by induction a summation formula where terms are rational expressions (e.g., ∑1/(r(r+1)), ∑(2r+1)/(r²(r+1)²)).

14 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
Edexcel F1 2017 June Q3
5 marks Standard +0.8
3. Prove by induction that for \(n \in \mathbb { Z } ^ { + }\) $$\sum _ { r = 1 } ^ { n } \frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } - \frac { 1 } { ( n + 1 ) ( n + 2 ) }$$
Edexcel F1 2020 June Q8
12 marks Standard +0.8
  1. (i) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\)
$$\sum _ { r = 1 } ^ { n } \frac { 2 r ^ { 2 } - 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } = \frac { n ^ { 2 } } { ( n + 1 ) ^ { 2 } }$$ (ii) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\) $$f ( n ) = 12 ^ { n } + 2 \times 5 ^ { n - 1 }$$ is divisible by 7
VILU SIHI NI JIIIM ION OCVIUV SIHI NI III M M I ON OOVIAV SIHI NI JIIIM I ION OC
\includegraphics[max width=\textwidth, alt={}, center]{a3457c24-fbda-413d-b3b2-6be375307318-29_2255_50_314_34}
VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
\includegraphics[max width=\textwidth, alt={}, center]{a3457c24-fbda-413d-b3b2-6be375307318-31_2255_50_314_34}
END
Edexcel FP1 2009 January Q4
5 marks Standard +0.3
4. Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\), $$\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) } = \frac { n } { n + 1 }$$
Edexcel FP1 2016 June Q8
10 marks Standard +0.3
8. (i) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\) $$\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } = 1 - \frac { 1 } { ( n + 1 ) ^ { 2 } }$$ (ii) A sequence of positive rational numbers is defined by $$\begin{aligned} u _ { 1 } & = 3 \\ u _ { n + 1 } & = \frac { 1 } { 3 } u _ { n } + \frac { 8 } { 9 } , \quad n \in \mathbb { Z } ^ { + } \end{aligned}$$ Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\) $$u _ { n } = 5 \times \left( \frac { 1 } { 3 } \right) ^ { n } + \frac { 4 } { 3 }$$
OCR MEI FP1 2006 January Q6
7 marks Standard +0.3
6 Prove by induction that \(\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) } = \frac { n } { n + 1 }\).
OCR FP1 2011 June Q2
5 marks Standard +0.3
2 Prove by induction that, for \(n \geqslant 1 , \sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) } = \frac { n } { n + 1 }\).
OCR MEI FP1 2014 June Q6
7 marks Standard +0.3
6 Prove by induction that \(\frac { 1 } { 1 \times 3 } + \frac { 1 } { 3 \times 5 } + \frac { 1 } { 5 \times 7 } + \ldots + \frac { 1 } { ( 2 n - 1 ) ( 2 n + 1 ) } = \frac { n } { 2 n + 1 }\).
CAIE FP1 2008 November Q9
10 marks Challenging +1.2
9 Use induction to prove that $$\sum _ { n = 1 } ^ { N } \frac { 4 n + 1 } { n ( n + 1 ) ( 2 n - 1 ) ( 2 n + 1 ) } = 1 - \frac { 1 } { ( N + 1 ) ( 2 N + 1 ) }$$ Show that $$\sum _ { n = N + 1 } ^ { 2 N } \frac { 4 n + 1 } { n ( n + 1 ) ( 2 n - 1 ) ( 2 n + 1 ) } < \frac { 3 } { 8 N ^ { 2 } }$$
CAIE FP1 2015 June Q3
7 marks Standard +0.8
3 Prove by mathematical induction that, for all positive integers \(n , \sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }\). State the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\).
CAIE FP1 2012 November Q3
5 marks Standard +0.3
3 Let \(S _ { N } = \frac { 1 } { 2 ! } + \frac { 2 } { 3 ! } + \frac { 3 } { 4 ! } + \ldots + \frac { N } { ( N + 1 ) ! }\). Prove by mathematical induction that, for all positive integers \(N\), $$S _ { N } = 1 - \frac { 1 } { ( N + 1 ) ! }$$
AQA FP2 2012 June Q7
9 marks Standard +0.8
7
  1. Prove by induction that, for all integers \(n \geqslant 1\), $$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots + \frac { 2 n + 1 } { n ^ { 2 } ( n + 1 ) ^ { 2 } } = 1 - \frac { 1 } { ( n + 1 ) ^ { 2 } }$$
  2. Find the smallest integer \(n\) for which the sum of the series differs from 1 by less than \(10 ^ { - 5 }\).
Edexcel CP AS 2019 June Q3
6 marks Standard +0.3
  1. Prove by mathematical induction that, for \(n \in \mathbb { N }\)
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r - 1 ) ( 2 r + 1 ) } = \frac { n } { 2 n + 1 }$$
Edexcel CP AS 2024 June Q7
10 marks Standard +0.3
  1. (i) Prove by induction that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { r ( r + 1 ) } = \frac { n } { n + 1 }$$ (ii) Prove by induction that, for all positive integers \(n\), $$f ( n ) = 3 ^ { 2 n + 4 } - 2 ^ { 2 n }$$ is divisible by 5
Edexcel CP1 2019 June Q4
5 marks Challenging +1.2
  1. Prove that, for \(n \in \mathbb { Z } , n \geqslant 0\)
$$\sum _ { r = 0 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) } = \frac { ( n + a ) ( n + b ) } { c ( n + 2 ) ( n + 3 ) }$$ where \(a\), \(b\) and \(c\) are integers to be found.