CAIE Further Paper 1 2023 June — Question 1

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2023
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicProof by induction

1 Let \(\mathbf { A } = \left( \begin{array} { l l } 3 & 0 \\ 1 & 1 \end{array} \right)\).
  1. Prove by mathematical induction that, for all positive integers \(n\), $$2 \mathbf { A } ^ { n } = \left( \begin{array} { l l } 2 \times 3 ^ { n } & 0 \\ 3 ^ { n } - 1 & 2 \end{array} \right)$$
  2. Find, in terms of \(n\), the inverse of \(\mathbf { A } ^ { n }\).

1 Let $\mathbf { A } = \left( \begin{array} { l l } 3 & 0 \\ 1 & 1 \end{array} \right)$.\\
(a) Prove by mathematical induction that, for all positive integers $n$,

$$2 \mathbf { A } ^ { n } = \left( \begin{array} { l l } 
2 \times 3 ^ { n } & 0 \\
3 ^ { n } - 1 & 2
\end{array} \right)$$

(b) Find, in terms of $n$, the inverse of $\mathbf { A } ^ { n }$.\\

\hfill \mbox{\textit{CAIE Further Paper 1 2023 Q1}}