| Exam Board | CAIE |
| Module | Further Paper 1 (Further Paper 1) |
| Year | 2024 |
| Session | November |
| Topic | Proof by induction |
2 Prove by mathematical induction that, for all positive integers \(n\),
$$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \tan ^ { - 1 } x \right) = P _ { n } ( x ) \left( 1 + x ^ { 2 } \right) ^ { - n } ,$$
where \(P _ { n } ( x )\) is a polynomial of degree \(n - 1\).
\includegraphics[max width=\textwidth, alt={}, center]{99ac7fe2-184b-4a72-89f6-03fe4b2af138-05_2726_35_97_20}