CAIE
Further Paper 1
2024
November
Q1
5 marks
Moderate -0.3
1 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } = 4\) and \(u _ { n + 1 } = 3 u _ { n } - 2\) for \(n \geqslant 1\).
Prove by induction that \(u _ { n } = 3 ^ { n } + 1\) for all positive integers \(n\).
Edexcel
F1
2016
June
Q10
11 marks
Standard +0.3
10. (i) A sequence of positive numbers is defined by
$$\begin{aligned}
u _ { 1 } & = 5 \\
u _ { n + 1 } & = 3 u _ { n } + 2 , \quad n \geqslant 1
\end{aligned}$$
Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$u _ { n } = 2 \times ( 3 ) ^ { n } - 1$$
(ii) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$\sum _ { r = 1 } ^ { n } \frac { 4 r } { 3 ^ { r } } = 3 - \frac { ( 3 + 2 n ) } { 3 ^ { n } }$$
Edexcel
FP1
Q6
5 marks
Moderate -0.3
6. A series of positive integers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { 1 } = 6 \text { and } u _ { n + 1 } = 6 u _ { n } - 5 , \text { for } n \geq 1 .$$
Prove by induction that \(u _ { n } = 5 \times 6 ^ { n - 1 } + 1\), for \(n \geq 1\).
Edexcel
FP1
Q6
Standard +0.3
6. A series of positive integers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { 1 } = 6 \text { and } u _ { n + 1 } = 6 u _ { n } - 5 , \text { for } n \geqslant 1 .$$
Prove by induction that \(u _ { n } = 5 \times 6 ^ { n - 1 } + 1\), for \(n \geqslant 1\).
Edexcel
FP1
2009
January
Q6
5 marks
Standard +0.3
6. A series of positive integers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { 1 } = 6 \text { and } u _ { n + 1 } = 6 u _ { n } - 5 \text {, for } n \geqslant 1 \text {. }$$
Prove by induction that \(u _ { n } = 5 \times 6 ^ { n - 1 } + 1\), for \(n \geqslant 1\).
Edexcel
FP1
2011
January
Q9
5 marks
Standard +0.3
9. A sequence of numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , u _ { 4 } , \ldots\) is defined by
$$u _ { n + 1 } = 4 u _ { n } + 2 , \quad u _ { 1 } = 2$$
Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$u _ { n } = \frac { 2 } { 3 } \left( 4 ^ { n } - 1 \right)$$
Edexcel
FP1
2013
January
Q8
11 marks
Standard +0.8
8. (a) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$\sum _ { r = 1 } ^ { n } r ( r + 3 ) = \frac { 1 } { 3 } n ( n + 1 ) ( n + 5 )$$
(b) A sequence of positive integers is defined by
$$\begin{aligned}
u _ { 1 } & = 1 \\
u _ { n + 1 } & = u _ { n } + n ( 3 n + 1 ) , \quad n \in \mathbb { Z } ^ { + }
\end{aligned}$$
Prove by induction that
$$u _ { n } = n ^ { 2 } ( n - 1 ) + 1 , \quad n \in \mathbb { Z } ^ { + }$$
Edexcel
FP1
2014
January
Q10
11 marks
Standard +0.3
10. (i) A sequence of numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\), is defined by
$$u _ { n + 1 } = 5 u _ { n } + 3 , \quad u _ { 1 } = 3$$
Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$u _ { n } = \frac { 3 } { 4 } \left( 5 ^ { n } - 1 \right)$$
(ii) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$f ( n ) = 5 \left( 5 ^ { n } \right) - 4 n - 5 \text { is divisible by } 16 .$$
\includegraphics[max width=\textwidth, alt={}, center]{9093bb1d-4f32-44e7-b0e7-b8c4f8a844e1-32_109_127_2473_1818}
\includegraphics[max width=\textwidth, alt={}, center]{9093bb1d-4f32-44e7-b0e7-b8c4f8a844e1-32_205_1828_2553_122}
Edexcel
FP1
2013
June
Q9
10 marks
Standard +0.8
9. (a) A sequence of numbers is defined by
$$\begin{aligned}
& u _ { 1 } = 8 \\
& u _ { n + 1 } = 4 u _ { n } - 9 n , \quad n \geqslant 1
\end{aligned}$$
Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$u _ { n } = 4 ^ { n } + 3 n + 1$$
(b) Prove by induction that, for \(m \in \mathbb { Z } ^ { + }\),
$$\left( \begin{array} { l l }
3 & - 4 \\
1 & - 1
\end{array} \right) ^ { m } = \left( \begin{array} { c c }
2 m + 1 & - 4 m \\
m & 1 - 2 m
\end{array} \right)$$
OCR
FP1
2011
January
Q3
4 marks
Standard +0.3
3 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by \(u _ { 1 } = 2\), and \(u _ { n + 1 } = 2 u _ { n } - 1\) for \(n \geqslant 1\). Prove by induction that \(u _ { n } = 2 ^ { n - 1 } + 1\).