CAIE
Further Paper 1
2021
November
Q2
6 marks
Challenging +1.2
2 It is given that \(\mathrm { y } = \mathrm { xe } ^ { \mathrm { ax } }\), where \(a\) is a constant.
Prove by mathematical induction that, for all positive integers \(n\),
$$\frac { d ^ { n } y } { d x ^ { n } } = \left( a ^ { n } x + n a ^ { n - 1 } \right) e ^ { a x }$$
CAIE
Further Paper 1
2024
November
Q2
6 marks
Challenging +1.8
2 Prove by mathematical induction that, for all positive integers \(n\),
$$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \tan ^ { - 1 } x \right) = P _ { n } ( x ) \left( 1 + x ^ { 2 } \right) ^ { - n } ,$$
where \(P _ { n } ( x )\) is a polynomial of degree \(n - 1\).
\includegraphics[max width=\textwidth, alt={}, center]{99ac7fe2-184b-4a72-89f6-03fe4b2af138-05_2726_35_97_20}
CAIE
Further Paper 1
2024
November
Q2
6 marks
Challenging +1.2
2 Prove by mathematical induction that, for all positive integers \(n\),
$$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \tan ^ { - 1 } x \right) = P _ { n } ( x ) \left( 1 + x ^ { 2 } \right) ^ { - n } ,$$
where \(P _ { n } ( x )\) is a polynomial of degree \(n - 1\).
\includegraphics[max width=\textwidth, alt={}, center]{beb69d0f-3f83-49bf-b9a2-329ddc7243fa-04_2718_42_107_2007}
\includegraphics[max width=\textwidth, alt={}, center]{beb69d0f-3f83-49bf-b9a2-329ddc7243fa-05_2726_35_97_20}
CAIE
FP1
2018
November
Q6
8 marks
Challenging +1.2
6 It is given that \(y = \mathrm { e } ^ { x } u\), where \(u\) is a function of \(x\). The \(r\) th derivatives \(\frac { \mathrm { d } ^ { r } y } { \mathrm {~d} x ^ { r } }\) and \(\frac { \mathrm { d } ^ { r } u } { \mathrm {~d} x ^ { r } }\) are denoted by \(y ^ { ( r ) }\) and \(u ^ { ( r ) }\) respectively. Prove by mathematical induction that, for all positive integers \(n\),
$$y ^ { ( n ) } = \mathrm { e } ^ { x } \left( \binom { n } { 0 } u + \binom { n } { 1 } u ^ { ( 1 ) } + \binom { n } { 2 } u ^ { ( 2 ) } + \ldots + \binom { n } { r } u ^ { ( r ) } + \ldots + \binom { n } { n } u ^ { ( n ) } \right)$$
[You may use without proof the result \(\binom { k } { r } + \binom { k } { r - 1 } = \binom { k + 1 } { r }\).]
CAIE
FP1
2019
November
Q2
6 marks
Challenging +1.2
2 It is given that \(y = \ln ( a x + 1 )\), where \(a\) is a positive constant. Prove by mathematical induction that, for every positive integer \(n\),
$$\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } } = ( - 1 ) ^ { n - 1 } \frac { ( n - 1 ) ! a ^ { n } } { ( a x + 1 ) ^ { n } }$$
CAIE
FP1
2017
Specimen
Q3
6 marks
Challenging +1.2
3 Given that \(a\) is a constant, prove by mathematical induction that, for every positive integer \(n\),
$$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( x \mathrm { e } ^ { a x } \right) = n a ^ { n - 1 } \mathrm { e } ^ { a x } + a ^ { n } x \mathrm { e } ^ { a x }$$
CAIE
FP1
2007
November
Q3
6 marks
Challenging +1.2
3 Prove by induction that, for all \(n \geqslant 1\),
$$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x ^ { 2 } } \right) = \mathrm { P } _ { n } ( x ) \mathrm { e } ^ { x ^ { 2 } } ,$$
where \(\mathrm { P } _ { n } ( x )\) is a polynomial in \(x\) of degree \(n\) with the coefficient of \(x ^ { n }\) equal to \(2 ^ { n }\).