9. (i) A sequence of numbers is defined by
$$\begin{gathered}
u _ { 1 } = 0 \quad u _ { 2 } = - 6
u _ { n + 2 } = 5 u _ { n + 1 } - 6 u _ { n } \quad n \geqslant 1
\end{gathered}$$
Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\)
$$u _ { n } = 3 \times 2 ^ { n } - 2 \times 3 ^ { n }$$
(ii) Prove by induction that, for all positive integers \(n\),
$$f ( n ) = 3 ^ { 3 n - 2 } + 2 ^ { 4 n - 1 }$$
is divisible by 11
\includegraphics[max width=\textwidth, alt={}]{41065a55-38c3-4b16-a02d-ece9f02ef32c-36_2820_1967_102_100}