Questions (29700 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE P2 2024 March Q3
7 marks Moderate -0.3
3 The polynomial \(\mathrm { p } ( x )\) is defined by $$p ( x ) = 6 x ^ { 3 } + a x ^ { 2 } + 3 x - 10$$ where \(a\) is a constant. It is given that \(( 2 x - 1 )\) is a factor of \(\mathrm { p } ( x )\).
  1. Find the value of \(a\) and hence factorise \(\mathrm { p } ( x )\) completely.
  2. Solve the equation \(\mathrm { p } ( \operatorname { cosec } \theta ) = 0\) for \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\).
    \includegraphics[max width=\textwidth, alt={}, center]{7b39a2ab-305d-43c5-a1e7-9442d6c13886-06_442_706_278_667} The diagram shows the curve with equation \(\mathrm { y } = \sqrt { 1 + \mathrm { e } ^ { 0.5 \mathrm { x } } }\). The shaded region is bounded by the curve and the straight lines \(x = 0 , x = 6\) and \(y = 0\).
  3. Use the trapezium rule with three intervals to find an approximation to the area of the shaded region. Give your answer correct to 3 significant figures.
  4. The shaded region is rotated completely about the \(x\)-axis. Find the exact volume of the solid produced.
CAIE P2 2024 March Q5
9 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{7b39a2ab-305d-43c5-a1e7-9442d6c13886-08_615_469_260_799} The diagram shows part of the curve with equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 3 } } { \mathrm { x } + 2 }\). At the point \(P\), the gradient of the curve is 6 .
  1. Show that the \(x\)-coordinate of \(P\) satisfies the equation \(x = \sqrt [ 3 ] { 12 x + 12 }\).
  2. Show by calculation that the \(x\)-coordinate of \(P\) lies between 3.8 and 4.0 .
  3. Use an iterative formula, based on the equation in part (a), to find the \(x\)-coordinate of \(P\) correct to 3 significant figures. Show the result of each iteration to 5 significant figures.
CAIE P2 2024 March Q6
9 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{7b39a2ab-305d-43c5-a1e7-9442d6c13886-10_629_620_278_717} The diagram shows the curve with parametric equations $$x = 1 + \sqrt { t } , \quad y = ( \ln t + 2 ) ( \ln t - 3 ) ,$$ for \(0 < t < 25\). The curve crosses the \(x\)-axis at the points \(A\) and \(B\) and has a minimum point \(M\).
  1. Show that \(\frac { \mathrm { dy } } { \mathrm { dx } } = \frac { 4 \mathrm { Int } - 2 } { \sqrt { \mathrm { t } } }\).
  2. Find the exact gradient of the curve at \(B\).
  3. Find the exact coordinates of \(M\).
CAIE P2 2024 March Q7
10 marks Standard +0.3
7
  1. Prove that $$\sin 2 \theta ( a \cot \theta + b \tan \theta ) \equiv a + b + ( a - b ) \cos 2 \theta$$ where \(a\) and \(b\) are constants.
  2. Find the exact value of \(\int _ { \frac { 1 } { 12 } \pi } ^ { \frac { 1 } { 6 } \pi } \sin 2 \theta ( 5 \cot \theta + 3 \tan \theta ) d \theta\).
  3. Solve the equation \(\sin \frac { 2 } { 3 } \alpha \left( 2 \cot \frac { 1 } { 3 } \alpha + 7 \tan \frac { 1 } { 3 } \alpha \right) = 11\) for \(- \pi < \alpha < \pi\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE P2 2020 November Q1
4 marks Moderate -0.5
1 Given that $$\ln ( 2 x + 1 ) - \ln ( x - 3 ) = 2$$ find \(x\) in terms of e.
CAIE P2 2020 November Q2
5 marks Moderate -0.8
2 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = x ^ { 3 } + a x ^ { 2 } + b x + 16$$ where \(a\) and \(b\) are constants. It is given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\) and that the remainder is 72 when \(\mathrm { p } ( x )\) is divided by \(( x - 2 )\). Find the values of \(a\) and \(b\).
CAIE P2 2020 November Q3
5 marks Moderate -0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{8beee722-7f86-454a-bc36-27e83f1483fd-04_684_455_260_845} The diagram shows the curve \(y = 2 + \mathrm { e } ^ { - 2 x }\). The curve crosses the \(y\)-axis at the point \(A\), and the point \(B\) on the curve has \(x\)-coordinate 1 . The shaded region is bounded by the curve and the line segment \(A B\). Find the exact area of the shaded region.
CAIE P2 2020 November Q4
5 marks Standard +0.3
4
  1. Solve the equation \(| 2 x - 5 | = | x + 6 |\).
  2. Hence find the value of \(y\) such that \(\left| 2 ^ { 1 - y } - 5 \right| = \left| 2 ^ { - y } + 6 \right|\). Give your answer correct to 3 significant figures.
CAIE P2 2020 November Q5
5 marks Moderate -0.3
5 The sequence of values given by the iterative formula \(x _ { n + 1 } = \frac { 6 + 8 x _ { n } } { 8 + x _ { n } ^ { 2 } }\) with initial value \(x _ { 1 } = 2\) converges to \(\alpha\).
  1. Use the iterative formula to find the value of \(\alpha\) correct to 4 significant figures. Give the result of each iteration to 6 significant figures.
  2. State an equation satisfied by \(\alpha\) and hence determine the exact value of \(\alpha\).
CAIE P2 2020 November Q6
6 marks Standard +0.3
6 It is given that \(3 \sin 2 \theta = \cos \theta\) where \(\theta\) is an angle such that \(0 ^ { \circ } < \theta < 90 ^ { \circ }\).
  1. Find the exact value of \(\sin \theta\).
  2. Find the exact value of \(\sec \theta\).
  3. Find the exact value of \(\cos 2 \theta\).
CAIE P2 2020 November Q7
10 marks Standard +0.3
7 A curve is defined by the parametric equations $$x = 3 t - 2 \sin t , \quad y = 5 t + 4 \cos t$$ where \(0 \leqslant t \leqslant 2 \pi\). At each of the points \(P\) and \(Q\) on the curve, the gradient of the curve is \(\frac { 5 } { 2 }\).
  1. Show that the values of \(t\) at \(P\) and \(Q\) satisfy the equation \(10 \cos t - 8 \sin t = 5\).
  2. Express \(10 \cos t - 8 \sin t\) in the form \(R \cos ( t + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\). Give the exact value of \(R\) and the value of \(\alpha\) correct to 3 significant figures.
  3. Hence find the values of \(t\) at the points \(P\) and \(Q\).
CAIE P2 2020 November Q8
10 marks Standard +0.3
8 A curve has equation \(y = f ( x )\) where \(f ( x ) = \frac { 4 x ^ { 3 } + 8 x - 4 } { 2 x - 1 }\).
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence find the coordinates of each of the stationary points of the curve \(y = \mathrm { f } ( x )\).
  2. Divide \(4 x ^ { 3 } + 8 x - 4\) by ( \(2 x - 1\) ), and hence find \(\int \mathrm { f } ( x ) \mathrm { d } x\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2020 November Q1
3 marks Moderate -0.8
1 Solve the equation \(7 \cot \theta = 3 \operatorname { cosec } \theta\) for \(0 ^ { \circ } < \theta < 90 ^ { \circ }\).
CAIE P2 2020 November Q2
5 marks Moderate -0.3
2 Given that \(\frac { 2 ^ { 3 x + 2 } + 8 } { 2 ^ { 3 x } - 7 } = 5\), find the value of \(2 ^ { 3 x }\) and hence, using logarithms, find the value of \(x\) correct to 4 significant figures.
CAIE P2 2020 November Q3
6 marks Moderate -0.3
3
  1. Sketch, on a single diagram, the graphs of \(y = \left| \frac { 1 } { 2 } x - a \right|\) and \(y = \frac { 3 } { 2 } x - \frac { 1 } { 2 } a\), where \(a\) is a positive constant.
  2. Find the coordinates of the point of intersection of the two graphs.
  3. Deduce the solution of the inequality \(\left| \frac { 1 } { 2 } x - a \right| > \frac { 3 } { 2 } x - \frac { 1 } { 2 } a\).
CAIE P2 2020 November Q4
7 marks Moderate -0.3
4
\includegraphics[max width=\textwidth, alt={}, center]{c473f577-1e96-4d11-a0d5-cdfa4873c295-06_460_1445_260_349} The diagram shows the curve with equation \(y = \frac { x - 2 } { x ^ { 2 } + 8 }\). The shaded region is bounded by the curve and the lines \(x = 14\) and \(y = 0\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence determine the exact \(x\)-coordinates of the stationary points.
  2. Use the trapezium rule with three intervals to find an approximation to the area of the shaded region. Give the answer correct to 2 significant figures.
CAIE P2 2020 November Q5
9 marks Standard +0.3
5 The equation of a curve is \(2 \mathrm { e } ^ { 2 x } y - y ^ { 3 } + 4 = 0\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 \mathrm { e } ^ { 2 x } y } { 3 y ^ { 2 } - 2 \mathrm { e } ^ { 2 x } }\).
  2. The curve passes through the point \(( 0,2 )\). Find the equation of the tangent to the curve at this point, giving your answer in the form \(a x + b y + c = 0\).
  3. Show that the curve has no stationary points.
CAIE P2 2020 November Q6
10 marks Standard +0.3
6
  1. Find \(\int \left( \frac { 8 } { 4 x + 1 } + \frac { 8 } { \cos ^ { 2 } ( 4 x + 1 ) } \right) \mathrm { d } x\).
  2. It is given that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \left( 3 + 4 \cos ^ { 2 } \frac { 1 } { 2 } x + k \sin 2 x \right) \mathrm { d } x = 10\). Find the exact value of the constant \(k\).
CAIE P2 2020 November Q7
10 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{c473f577-1e96-4d11-a0d5-cdfa4873c295-12_650_720_260_708} A curve has equation \(y = \mathrm { f } ( x )\) where \(\mathrm { f } ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 6 x ^ { 2 } + 5 x - 15\). As shown in the diagram, the curve crosses the \(x\)-axis at the points \(A\) and \(B\) with coordinates \(( a , 0 )\) and \(( b , 0 )\) respectively.
  1. Use the factor theorem to show that \(( x - 3 )\) is a factor of \(\mathrm { f } ( x )\).
  2. By first finding the quotient when \(\mathrm { f } ( x )\) is divided by \(( x - 3 )\), show that $$a = - \sqrt { \frac { 5 } { 2 - a } } .$$
  3. Use an iterative formula, based on the equation in part (b), to find the value of \(a\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2020 November Q3
5 marks Moderate -0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{b4a4082c-f3cd-47c5-8673-680dae9a22bd-04_684_455_260_845} The diagram shows the curve \(y = 2 + \mathrm { e } ^ { - 2 x }\). The curve crosses the \(y\)-axis at the point \(A\), and the point \(B\) on the curve has \(x\)-coordinate 1 . The shaded region is bounded by the curve and the line segment \(A B\). Find the exact area of the shaded region.
CAIE P2 2021 November Q1
4 marks Moderate -0.8
1 Find the exact value of \(\int _ { - 1 } ^ { 2 } \left( 4 \mathrm { e } ^ { 2 x } - 2 \mathrm { e } ^ { - x } \right) \mathrm { d } x\).
CAIE P2 2021 November Q2
6 marks Moderate -0.8
2
  1. Sketch, on the same diagram, the graphs of \(y = 3 x\) and \(y = | x - 3 |\).
  2. Find the coordinates of the point where the two graphs intersect.
  3. Deduce the solution of the inequality \(3 x < | x - 3 |\).
CAIE P2 2021 November Q3
5 marks Moderate -0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{83d0697c-b133-47da-a745-dfdafa7dbf10-05_604_933_258_605} The variables \(x\) and \(y\) satisfy the equation \(a ^ { y } = k x\), where \(a\) and \(k\) are constants. The graph of \(y\) against \(\ln x\) is a straight line passing through the points \(( 1.03,6.36 )\) and \(( 2.58,9.00 )\), as shown in the diagram. Find the values of \(a\) and \(k\), giving each value correct to 2 significant figures.
CAIE P2 2021 November Q4
8 marks Standard +0.3
4 The curve with equation \(y = x \mathrm { e } ^ { 2 x } + 5 \mathrm { e } ^ { - x }\) has a minimum point \(M\).
  1. Show that the \(x\)-coordinate of \(M\) satisfies the equation \(x = \frac { 1 } { 3 } \ln 5 - \frac { 1 } { 3 } \ln ( 1 + 2 x )\).
  2. Use an iterative formula, based on the equation in part (a), to find the \(x\)-coordinate of \(M\) correct to 3 significant figures. Use an initial value of 0.35 and give the result of each iteration to 5 significant figures.
CAIE P2 2021 November Q5
8 marks Moderate -0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{83d0697c-b133-47da-a745-dfdafa7dbf10-08_663_433_260_854} The diagram shows the curve with parametric equations $$x = \ln ( 2 t + 3 ) , \quad y = \frac { 2 t - 3 } { 2 t + 3 } .$$ The curve crosses the \(y\)-axis at the point \(A\) and the \(x\)-axis at the point \(B\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 } { 2 t + 3 }\).
  2. Find the gradient of the curve at \(A\).
  3. Find the gradient of the curve at \(B\).