Questions (30179 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE M1 2011 June Q4
8 marks Moderate -0.3
4 \includegraphics[max width=\textwidth, alt={}, center]{d3bb6702-231d-42a0-830e-9f844dca78d7-3_511_901_255_621} The three coplanar forces shown in the diagram act at a point \(P\) and are in equilibrium.
  1. Find the values of \(F\) and \(\theta\).
  2. State the magnitude and direction of the resultant force at \(P\) when the force of magnitude 12 N is removed.
CAIE M1 2011 June Q5
8 marks Standard +0.3
5 Two particles \(P\) and \(Q\) are projected vertically upwards from horizontal ground at the same instant. The speeds of projection of \(P\) and \(Q\) are \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively and the heights of \(P\) and \(Q\) above the ground, \(t\) seconds after projection, are \(h _ { P } \mathrm {~m}\) and \(h _ { Q } \mathrm {~m}\) respectively. Each particle comes to rest on returning to the ground.
  1. Find the set of values of \(t\) for which the particles are travelling in opposite directions.
  2. At a certain instant, \(P\) and \(Q\) are above the ground and \(3 h _ { P } = 8 h _ { Q }\). Find the velocities of \(P\) and \(Q\) at this instant.
CAIE M1 2011 June Q6
9 marks Standard +0.3
6 \includegraphics[max width=\textwidth, alt={}, center]{d3bb6702-231d-42a0-830e-9f844dca78d7-3_387_1095_1724_525} A small smooth ring \(R\), of mass 0.6 kg , is threaded on a light inextensible string of length 100 cm . One end of the string is attached to a fixed point \(A\). A small bead \(B\) of mass 0.4 kg is attached to the other end of the string, and is threaded on a fixed rough horizontal rod which passes through \(A\). The system is in equilibrium with \(B\) at a distance of 80 cm from \(A\) (see diagram).
  1. Find the tension in the string.
  2. Find the frictional and normal components of the contact force acting on \(B\).
  3. Given that the equilibrium is limiting, find the coefficient of friction between the bead and the rod.
CAIE M1 2011 June Q7
10 marks Standard +0.3
7 A walker travels along a straight road passing through the points \(A\) and \(B\) on the road with speeds \(0.9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(1.3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively. The walker's acceleration between \(A\) and \(B\) is constant and equal to \(0.004 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Find the time taken by the walker to travel from \(A\) to \(B\), and find the distance \(A B\). A cyclist leaves \(A\) at the same instant as the walker. She starts from rest and travels along the straight road, passing through \(B\) at the same instant as the walker. At time \(t \mathrm {~s}\) after leaving \(A\) the cyclist's speed is \(k t ^ { 3 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\), where \(k\) is a constant.
  2. Show that when \(t = 64.05\) the speed of the walker and the speed of the cyclist are the same, correct to 3 significant figures.
  3. Find the cyclist's acceleration at the instant she passes through \(B\).
CAIE M1 2011 June Q1
3 marks Moderate -0.8
1 A block is pulled for a distance of 50 m along a horizontal floor, by a rope that is inclined at an angle of \(\alpha ^ { \circ }\) to the floor. The tension in the rope is 180 N and the work done by the tension is 8200 J . Find the value of \(\alpha\).
CAIE M1 2011 June Q2
6 marks Moderate -0.3
2 A car of mass 1250 kg is travelling along a straight horizontal road with its engine working at a constant rate of \(P \mathrm {~W}\). The resistance to the car's motion is constant and equal to \(R \mathrm {~N}\). When the speed of the car is \(19 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) its acceleration is \(0.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\), and when the speed of the car is \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) its acceleration is \(0.16 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Find the values of \(P\) and \(R\).
CAIE M1 2011 June Q3
6 marks Standard +0.3
3 \includegraphics[max width=\textwidth, alt={}, center]{8d64372d-0b9a-4b93-8c41-7096c813f714-2_443_825_755_661} A particle \(P\) is projected from the top of a smooth ramp with speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\), and travels down a line of greatest slope. The ramp has length 6.4 m and is inclined at \(30 ^ { \circ }\) to the horizontal. Another particle \(Q\) is released from rest at a point 3.2 m vertically above the bottom of the ramp, at the same instant that \(P\) is projected (see diagram). Given that \(P\) and \(Q\) reach the bottom of the ramp simultaneously, find
  1. the value of \(u\),
  2. the speed with which \(P\) reaches the bottom of the ramp. \includegraphics[max width=\textwidth, alt={}, center]{8d64372d-0b9a-4b93-8c41-7096c813f714-3_609_1539_255_303} The diagram shows the velocity-time graphs for the motion of two particles \(P\) and \(Q\), which travel in the same direction along a straight line. \(P\) and \(Q\) both start at the same point \(X\) on the line, but \(Q\) starts to move \(T\) s later than \(P\). Each particle moves with speed \(2.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for the first 20 s of its motion. The speed of each particle changes instantaneously to \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) after it has been moving for 20 s and the particle continues at this speed.
CAIE M1 2011 June Q5
9 marks Standard +0.3
5 \includegraphics[max width=\textwidth, alt={}, center]{8d64372d-0b9a-4b93-8c41-7096c813f714-4_620_623_255_760} A small block of mass 1.25 kg is on a horizontal surface. Three horizontal forces, with magnitudes and directions as shown in the diagram, are applied to the block. The angle \(\theta\) is such that \(\cos \theta = 0.28\) and \(\sin \theta = 0.96\). A horizontal frictional force also acts on the block, and the block is in equilibrium.
  1. Show that the magnitude of the frictional force is 7.5 N and state the direction of this force.
  2. Given that the block is in limiting equilibrium, find the coefficient of friction between the block and the surface. The force of magnitude 6.1 N is now replaced by a force of magnitude 8.6 N acting in the same direction, and the block begins to move.
  3. Find the magnitude and direction of the acceleration of the block.
CAIE M1 2011 June Q6
9 marks Moderate -0.3
6 A lorry of mass 15000 kg climbs a hill of length 500 m at a constant speed. The hill is inclined at \(2.5 ^ { \circ }\) to the horizontal. The resistance to the lorry's motion is constant and equal to 800 N .
  1. Find the work done by the lorry's driving force. On its return journey the lorry reaches the top of the hill with speed \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and continues down the hill with a constant driving force of 2000 N . The resistance to the lorry's motion is again constant and equal to 800 N .
  2. Find the speed of the lorry when it reaches the bottom of the hill.
CAIE M1 2011 June Q7
10 marks Standard +0.3
7 A particle travels in a straight line from \(A\) to \(B\) in 20 s . Its acceleration \(t\) seconds after leaving \(A\) is \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\), where \(a = \frac { 3 } { 160 } t ^ { 2 } - \frac { 1 } { 800 } t ^ { 3 }\). It is given that the particle comes to rest at \(B\).
  1. Show that the initial speed of the particle is zero.
  2. Find the maximum speed of the particle.
  3. Find the distance \(A B\).
CAIE M1 2012 June Q1
4 marks Moderate -0.3
1 A car of mass 880 kg travels along a straight horizontal road with its engine working at a constant rate of \(P \mathrm {~W}\). The resistance to motion is 700 N . At an instant when the car's speed is \(16 \mathrm {~ms} ^ { - 1 }\) its acceleration is \(0.625 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Find the value of \(P\).
CAIE M1 2012 June Q2
5 marks Standard +0.3
2 \includegraphics[max width=\textwidth, alt={}, center]{01e73486-5a95-4e65-bf18-518d1adc7cfb-2_318_632_482_753} Forces of magnitudes 13 N and 14 N act at a point \(O\) in the directions shown in the diagram. The resultant of these forces has magnitude 15 N . Find
  1. the value of \(\theta\),
  2. the component of the resultant in the direction of the force of magnitude 14 N .
CAIE M1 2012 June Q3
6 marks Moderate -0.8
3 \includegraphics[max width=\textwidth, alt={}, center]{01e73486-5a95-4e65-bf18-518d1adc7cfb-2_502_661_1219_742} A load of mass 160 kg is pulled vertically upwards, from rest at a fixed point \(O\) on the ground, using a winding drum. The load passes through a point \(A , 20 \mathrm {~m}\) above \(O\), with a speed of \(1.25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) (see diagram). Find, for the motion from \(O\) to \(A\),
  1. the gain in the potential energy of the load,
  2. the gain in the kinetic energy of the load. The power output of the winding drum is constant while the load is in motion.
  3. Given that the work done against the resistance to motion from \(O\) to \(A\) is 20 kJ and that the time taken for the load to travel from \(O\) to \(A\) is 41.7 s , find the power output of the winding drum.
CAIE M1 2012 June Q4
8 marks Standard +0.3
4 A particle \(P\) starts at the point \(O\) and travels in a straight line. At time \(t\) seconds after leaving \(O\) the velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), where \(v = 0.75 t ^ { 2 } - 0.0625 t ^ { 3 }\). Find
  1. the positive value of \(t\) for which the acceleration is zero,
  2. the distance travelled by \(P\) before it changes its direction of motion.
CAIE M1 2012 June Q5
8 marks Standard +0.3
5 \includegraphics[max width=\textwidth, alt={}, center]{01e73486-5a95-4e65-bf18-518d1adc7cfb-3_485_874_255_638} The diagram shows the vertical cross-section \(O A B\) of a slide. The straight line \(A B\) is tangential to the curve \(O A\) at \(A\). The line \(A B\) is inclined at \(\alpha\) to the horizontal, where \(\sin \alpha = 0.28\). The point \(O\) is 10 m higher than \(B\), and \(A B\) has length 10 m (see diagram). The part of the slide containing the curve \(O A\) is smooth and the part containing \(A B\) is rough. A particle \(P\) of mass 2 kg is released from rest at \(O\) and moves down the slide.
  1. Find the speed of \(P\) when it passes through \(A\). The coefficient of friction between \(P\) and the part of the slide containing \(A B\) is \(\frac { 1 } { 12 }\). Find
  2. the acceleration of \(P\) when it is moving from \(A\) to \(B\),
  3. the speed of \(P\) when it reaches \(B\).
CAIE M1 2012 June Q6
9 marks Standard +0.3
6 \includegraphics[max width=\textwidth, alt={}, center]{01e73486-5a95-4e65-bf18-518d1adc7cfb-3_465_849_1475_648} Particles \(P\) and \(Q\), of masses 0.6 kg and 0.4 kg respectively, are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a vertical cross-section of a triangular prism. The base of the prism is fixed on horizontal ground and each of the sloping sides is smooth. Each sloping side makes an angle \(\theta\) with the ground, where \(\sin \theta = 0.8\). Initially the particles are held at rest on the sloping sides, with the string taut (see diagram). The particles are released and move along lines of greatest slope.
  1. Find the tension in the string and the acceleration of the particles while both are moving. The speed of \(P\) when it reaches the ground is \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). On reaching the ground \(P\) comes to rest and remains at rest. \(Q\) continues to move up the slope but does not reach the pulley.
  2. Find the time taken from the instant that the particles are released until \(Q\) reaches its greatest height above the ground.
CAIE M1 2012 June Q7
10 marks Standard +0.3
7 \includegraphics[max width=\textwidth, alt={}, center]{01e73486-5a95-4e65-bf18-518d1adc7cfb-4_529_481_255_831} A small ring of mass 0.2 kg is threaded on a fixed vertical rod. The end \(A\) of a light inextensible string is attached to the ring. The other end \(C\) of the string is attached to a fixed point of the rod above \(A\). A horizontal force of magnitude 8 N is applied to the point \(B\) of the string, where \(A B = 1.5 \mathrm {~m}\) and \(B C = 2 \mathrm {~m}\). The system is in equilibrium with the string taut and \(A B\) at right angles to \(B C\) (see diagram).
  1. Find the tension in the part \(A B\) of the string and the tension in the part \(B C\) of the string. The equilibrium is limiting with the ring on the point of sliding up the rod.
  2. Find the coefficient of friction between the ring and the rod.
CAIE M1 2012 June Q1
3 marks Easy -1.2
1 A block is pulled in a straight line along horizontal ground by a force of constant magnitude acting at an angle of \(60 ^ { \circ }\) above the horizontal. The work done by the force in moving the block a distance of 5 m is 75 J . Find the magnitude of the force.
CAIE M1 2012 June Q2
4 marks Moderate -0.3
2 \includegraphics[max width=\textwidth, alt={}, center]{fa0e0e0d-b0a6-44e0-8b4f-4923e235c6c6-2_465_478_479_836} Three coplanar forces of magnitudes \(F \mathrm {~N} , 12 \mathrm {~N}\) and 15 N are in equilibrium acting at a point \(P\) in the directions shown in the diagram. Find \(\alpha\) and \(F\).
CAIE M1 2012 June Q3
7 marks Moderate -0.3
3 A particle \(P\) moves in a straight line, starting from the point \(O\) with velocity \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The acceleration of \(P\) at time \(t \mathrm {~s}\) after leaving \(O\) is \(2 t ^ { \frac { 2 } { 3 } } \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Show that \(t ^ { \frac { 5 } { 3 } } = \frac { 5 } { 6 }\) when the velocity of \(P\) is \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find the distance of \(P\) from \(O\) when the velocity of \(P\) is \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
CAIE M1 2012 June Q4
7 marks Moderate -0.3
4 \includegraphics[max width=\textwidth, alt={}, center]{fa0e0e0d-b0a6-44e0-8b4f-4923e235c6c6-2_168_711_1612_717} A ring of mass 4 kg is attached to one end of a light string. The ring is threaded on a fixed horizontal rod and the string is pulled at an angle of \(25 ^ { \circ }\) below the horizontal (see diagram). With a tension in the string of \(T \mathrm {~N}\) the ring is in equilibrium.
  1. Find, in terms of \(T\), the horizontal and vertical components of the force exerted on the ring by the rod. The coefficient of friction between the ring and the rod is 0.4 .
  2. Given that the equilibrium is limiting, find the value of \(T\).
CAIE M1 2012 June Q5
7 marks Moderate -0.3
5 \includegraphics[max width=\textwidth, alt={}, center]{fa0e0e0d-b0a6-44e0-8b4f-4923e235c6c6-3_529_195_255_977} A block \(A\) of mass 3 kg is attached to one end of a light inextensible string \(S _ { 1 }\). Another block \(B\) of mass 2 kg is attached to the other end of \(S _ { 1 }\), and is also attached to one end of another light inextensible string \(S _ { 2 }\). The other end of \(S _ { 2 }\) is attached to a fixed point \(O\) and the blocks hang in equilibrium below \(O\) (see diagram).
  1. Find the tension in \(S _ { 1 }\) and the tension in \(S _ { 2 }\). The string \(S _ { 2 }\) breaks and the particles fall. The air resistance on \(A\) is 1.6 N and the air resistance on \(B\) is 4 N .
  2. Find the acceleration of the particles and the tension in \(S _ { 1 }\).
CAIE M1 2012 June Q6
9 marks Standard +0.3
6 A car of mass 1250 kg travels from the bottom to the top of a straight hill which has length 400 m and is inclined to the horizontal at an angle of \(\alpha\), where \(\sin \alpha = 0.125\). The resistance to the car's motion is 800 N . Find the work done by the car's engine in each of the following cases.
  1. The car's speed is constant.
  2. The car's initial speed is \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the car's driving force is 3 times greater at the top of the hill than it is at the bottom, and the car's power output is 5 times greater at the top of the hill than it is at the bottom.
CAIE M1 2012 June Q7
13 marks Standard +0.3
7 \includegraphics[max width=\textwidth, alt={}, center]{fa0e0e0d-b0a6-44e0-8b4f-4923e235c6c6-3_168_803_1909_671} The frictional force acting on a small block of mass 0.15 kg , while it is moving on a horizontal surface, has magnitude 0.12 N . The block is set in motion from a point \(X\) on the surface, with speed \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It hits a vertical wall at a point \(Y\) on the surface 2 s later. The block rebounds from the wall and moves directly towards \(X\) before coming to rest at the point \(Z\) (see diagram). At the instant that the block hits the wall it loses 0.072 J of its kinetic energy. The velocity of the block, in the direction from \(X\) to \(Y\), is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at time \(t \mathrm {~s}\) after it leaves \(X\).
  1. Find the values of \(v\) when the block arrives at \(Y\) and when it leaves \(Y\), and find also the value of \(t\) when the block comes to rest at \(Z\). Sketch the velocity-time graph.
  2. The displacement of the block from \(X\), in the direction from \(X\) to \(Y\), is \(s \mathrm {~m}\) at time \(t \mathrm {~s}\). Sketch the displacement-time graph. Show on your graph the values of \(s\) and \(t\) when the block is at \(Y\) and when it comes to rest at \(Z\).
CAIE M1 2012 June Q1
3 marks Easy -1.2
1 \includegraphics[max width=\textwidth, alt={}, center]{918b65cc-617d-4942-8d96-b02eef21e417-2_262_711_248_717} A ring is threaded on a fixed horizontal bar. The ring is attached to one end of a light inextensible string which is used to pull the ring along the bar at a constant speed of \(0.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The string makes a constant angle of \(24 ^ { \circ }\) with the bar and the tension in the string is 6 N (see diagram). Find the work done by the tension in a period of 8 s .