Questions S3 (597 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel S3 2024 June Q4
  1. The manager of a company making ice cream believes that the proportions of people in the population who prefer vanilla, chocolate, strawberry and other are in the ratio \(10 : 5 : 2 : 3\)
The manager takes a random sample of 400 customers and records their age and favourite ice cream flavour. The results are shown in the table below.
\multirow{2}{*}{}Ice cream flavour
VanillaChocolateStrawberryOtherTotal
\multirow{3}{*}{Age}Child95251325158
Teenager57201736130
Adult36501016112
Total188954077400
  1. Use the data in the table to test, at the \(5 \%\) level of significance, the manager's belief. You should state your hypotheses, test statistic, critical value and conclusion clearly. A researcher wants to investigate whether or not there is a relationship between the age of a customer and their favourite ice cream flavour. In order to test whether favourite ice cream flavour and age are related, the researcher plans to carry out a \(\chi ^ { 2 }\) test.
  2. Use the table to calculate expected frequencies for the group
    1. teenagers whose favourite ice cream flavour is vanilla,
    2. adults whose favourite ice cream flavour is chocolate.
  3. Write down the number of degrees of freedom for this \(\chi ^ { 2 }\) test.
Edexcel S3 2024 June Q5
  1. A manager of a large company is investigating the time it takes the company's employees to complete a task.
The manager believes that the mean time for full-time employees to complete the task is more than a minute quicker than the mean time for part-time employees to complete the task. The manager collects a random sample of 605 full-time employees and 45 part-time employees and records the times, \(t\) minutes, it takes each employee to complete the task. The results are summarised in the table below.
\(n\)\(\bar { t }\)\(s ^ { 2 }\)
Full-time employees6055.69
Part-time employees457.04
  1. Test, at the \(5 \%\) level of significance, the manager's claim. You should state your hypotheses, test statistic, critical value and conclusion clearly.
  2. State two assumptions you have made in carrying out the test in part (a) The company increases the size of the sample of part-time employees to 46 The time taken to complete the task by the extra employee is 8 minutes.
  3. Find an unbiased estimate of the variance for the sample of 46 part-time employees.
Edexcel S3 2024 June Q6
  1. The weights of bags of carrots, \(C \mathrm {~kg}\), are such that \(C \sim \mathrm {~N} \left( 1.2,0.03 ^ { 2 } \right)\)
Three bags of carrots are selected at random.
  1. Calculate the probability that their total weight is more than 3.5 kg . The weights of bags of potatoes, \(R \mathrm {~kg}\), are such that \(R \sim \mathrm {~N} \left( 2.3,0.03 ^ { 2 } \right)\)
    Two bags of potatoes are selected at random.
  2. Calculate the probability that the difference in their weights is more than 0.05 kg . The weights of trays, \(T \mathrm {~kg}\), are such that \(T \sim \mathrm {~N} \left( 2.5 , \sqrt { 0.1 } ^ { 2 } \right)\)
    The random variable \(G\) represents the total weight, in kg, of a single tray packed with 10 bags of potatoes where \(G\) and \(T\) are independent.
  3. Calculate \(\mathrm { P } ( G < 2 T + 20 )\)
Edexcel S3 2024 June Q7
  1. The continuous random variable \(D\) is uniformly distributed over the interval \([ x - 1 , x + 5 ]\) where \(x\) is a constant.
A random sample of \(n\) observations of \(D\) is taken, where \(n\) is large.
  1. Use the Central Limit Theorem to find an approximate distribution for \(\bar { D }\) Give your answer in terms of \(n\) and \(x\) where appropriate. The \(n\) observations of \(D\) have a sample mean of 24.6
    Given that the lower bound of the \(99 \%\) confidence interval for \(x\) is 22.101 to 3 decimal places,
  2. find the value of \(n\) Show your working clearly.
Edexcel S3 2020 October Q1
  1. The random variable \(X\) has the discrete uniform distribution
$$\mathrm { P } ( X = x ) = \frac { 1 } { \alpha } \quad \text { for } x = 1,2 , \ldots , \alpha$$ The mean of a random sample of size \(n\), taken from this distribution, is denoted by \(\bar { X }\)
  1. Show that \(2 \bar { X }\) is a biased estimator of \(\alpha\) A random sample of 6 observations of \(X\) is taken and the results are given below. $$\begin{array} { l l l l l l } 8 & 7 & 3 & 7 & 2 & 9 \end{array}$$
  2. Use the sample mean to estimate the value of \(\alpha\)
Edexcel S3 2020 October Q2
2. A university awards its graduates a degree in one of three categories, Distinction, Merit or Pass. Table 1 shows information about a random sample of 200 graduates from three departments, Arts, Humanities and Sciences. \begin{table}[h]
\cline { 2 - 5 } \multicolumn{1}{c|}{}ArtsHumanitiesSciencesTotal
Distinction22323892
Merit15301358
Pass18151750
Total557768
\captionsetup{labelformat=empty} \caption{Table 1}
\end{table} Xiu wants to carry out a test of independence between the category of degree and the department. Table 2 shows some of the values of \(\frac { ( O - E ) ^ { 2 } } { E }\) for this test. \begin{table}[h]
\cline { 2 - 5 } \multicolumn{1}{c|}{}ArtsHumanitiesSciencesTotal
Distinction0.430.331.442.20
Merit0.062.632.294.98
Pass
\captionsetup{labelformat=empty} \caption{Table 2}
\end{table}
  1. Complete Table 2
  2. Hence, complete Xiu’s hypothesis test using a \(5 \%\) level of significance. You should state the hypotheses, the degrees of freedom and the critical value used for this test.
Edexcel S3 2020 October Q3
3. Each of 7 athletes competed in a 200 metre race and a 400 metre race. The table shows the time, in seconds, taken by each athlete to complete the 200 metre race.
Athlete\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)
200 metre race (seconds)23.423.122.923.727.624.424.1
The finishing order in the 400 metre race is shown below, with athlete \(A\) finishing in the fastest time.
\(\begin{array} { l l l l l l l } A & B & G & C & D & F & E \end{array}\)
  1. Calculate the Spearman's rank correlation coefficient between the finishing order in the 200 metre race and the finishing order in the 400 metre race.
  2. Stating your hypotheses clearly, test whether or not there is evidence of a positive correlation between the finishing order in the 200 metre race and the finishing order in the 400 metre race. Use a \(5 \%\) level of significance. The 7 athletes also competed in a long jump competition with the following results.
    Athlete\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)
    Long jump (metres)6.506.476.126.126.486.386.47
    Yuliya wants to calculate the Spearman's rank correlation coefficient between the finishing order in the 200 metre race and the finishing order in the long jump for these athletes.
  3. Without carrying out any further calculations, explain how Yuliya should do this.
Edexcel S3 2020 October Q4
4. Luka wants to carry out a survey of students at his school. He obtains a list of all 280 students.
  1. Explain how he can use this list to select a systematic sample of 40 students. Luka is trying to make his own random number table. He generates 400 digits to put in his table. Figure 1 shows the frequency of each digit in his table. \begin{table}[h]
    Digit generated0123456789
    Frequency36423341444348383243
    \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{table} A test is carried out at the \(10 \%\) level of significance to see if the digits Luka generates follow a uniform distribution. For this test \(\sum \frac { ( \mathrm { O } - \mathrm { E } ) ^ { 2 } } { \mathrm { E } } = 5.9\)
  2. Determine the conclusion of this test.
    (3) The digits generated by Luka are taken two at a time to form two-digit numbers. Figure 2 shows the frequency of two-digit numbers in his table. \begin{table}[h]
    Two-digit numbers generated\(00 - 19\)\(20 - 39\)\(40 - 59\)\(60 - 79\)\(80 - 99\)
    Frequency3149304248
    \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{table}
  3. Test, at the \(10 \%\) level of significance, whether the two-digit numbers generated by Luka follow a uniform distribution. You should state the hypotheses, the degrees of freedom and the critical value used for this test. There are 70 students in Year 12 at his school.
  4. State, giving a reason, the advice you would give to Luka regarding the use of his table of numbers for generating a simple random sample of 10 of the Year 12 students.
Edexcel S3 2020 October Q5
5. A greengrocer is investigating the weights of two types of orange, type \(A\) and type \(B\). She believes that on average type \(A\) oranges weigh greater than 5 grams more than type \(B\) oranges. She collects a random sample of 40 type \(A\) oranges and 32 type \(B\) oranges and records the weight, \(x\) grams, of each orange. The table shows a summary of her data.
\(n\)\(\bar { x }\)\(\sum x ^ { 2 }\)
Type \(A\) oranges40140.4790258
Type \(B\) oranges32134.7581430
  1. Calculate unbiased estimates for the variance of the weights of the population of type \(A\) oranges and the variance of the weights of the population of type \(B\) oranges.
  2. Test, at the \(5 \%\) level of significance, the greengrocer's belief. You should state the hypotheses and the critical value used for this test.
  3. Explain how you have used the fact that the sample sizes are large in your answer to part (b).
Edexcel S3 2020 October Q6
6. The number of toasters sold by a shop each week may be modelled by a Poisson distribution with mean 4 A random sample of 35 weeks is taken and the mean number of toasters sold per week is found.
  1. Write down the approximate distribution for the mean number of toasters sold per week from a random sample of 35 weeks. The number of kettles sold by the shop each week may be modelled by a Poisson distribution with mean \(\lambda\) A random sample of 40 weeks is taken and the mean number of kettles sold per week is found. The width of the \(99 \%\) confidence interval for \(\lambda\) is 2.6
  2. Find an estimate for \(\lambda\) A second, independent random sample of 40 weeks is taken and a second \(99 \%\) confidence interval for \(\lambda\) is found.
  3. Find the probability that only one of these two confidence intervals contains \(\lambda\)
Edexcel S3 2020 October Q7
7. A company makes cricket balls and tennis balls. The weights of cricket balls, \(C\) grams, follow a normal distribution $$C \sim \mathrm {~N} \left( 160,1.25 ^ { 2 } \right)$$ Three cricket balls are selected at random.
  1. Find the probability that their total weight is more than 475.8 grams. The weights of tennis balls, \(T\) grams, follow a normal distribution $$T \sim \mathrm {~N} \left( 60,2 ^ { 2 } \right)$$ Five tennis balls and two cricket balls are selected at random.
  2. Find the probability that the total weight of the five tennis balls and the two cricket balls is more than 625 grams. A random sample of \(n\) tennis balls \(T _ { 1 } , T _ { 2 } , \ldots , T _ { n }\) is taken.
    The random variable \(Y = ( n - 1 ) T _ { 1 } - \sum _ { r = 2 } ^ { n } T _ { r }\)
    Given that \(\mathrm { P } ( Y > 40 ) = 0.0838\) correct to 4 decimal places,
  3. find \(n\).
    Leave
    blank
    Q7

    \hline &
    \hline \end{tabular}
Edexcel S3 2021 October Q1
  1. A machine makes screws with a mean length of 30 mm and a standard deviation of 2.5 mm .
A manager claims that, following some repairs, the machine is now making screws with a mean length of less than 30 mm . The manager takes a random sample of 80 screws and finds that they have a mean length of 29.5 mm . Use a suitable test, at the \(5 \%\) level of significance, to determine whether there is evidence to support the manager's claim. State your hypotheses clearly.
Edexcel S3 2021 October Q2
2. Andy has some apple trees. Over many years she has graded each apple from her trees as \(A , B , C , D\) or \(E\) according to the quality of the apple, with \(A\) being the highest quality and \(E\) being the lowest quality. She knows that the proportion of apples in each grade produced by her trees is as follows.
Grade\(A\)\(B\)\(C\)\(D\)\(E\)
Proportion\(4 \%\)\(28 \%\)\(52 \%\)\(10 \%\)\(6 \%\)
Raj advises Andy to add potassium to the soil around her apple trees. Andy believes that adding potassium will not affect the distribution of grades for the quality of the apples. To test her belief Andy adds potassium to the soil around her apple trees. The following year she counts the number of apples in each grade. The number of apples in each grade is shown in the table below.
Grade\(A\)\(B\)\(C\)\(D\)\(E\)
Frequency971136213
Test Andy's belief using a \(5 \%\) level of significance. Show your working clearly, stating your hypotheses, expected frequencies and degrees of freedom. 2 continued
Edexcel S3 2021 October Q3
3. A cafe owner wishes to know whether the price of strawberry jam is related to the taste of the jam. He finds a website that lists the price per 100 grams and a mark for the taste, out of 100, awarded by a judge, for 9 different strawberry jams \(A , B , C , D , E , F , G , H\) and \(I\). He then ranks the marks for taste and the prices. The ranks are shown in the table below.
Rank123456789
Price\(A\)\(B\)\(E\)\(C\)\(D\)\(F\)\(G\)\(H\)\(I\)
Taste\(A\)\(B\)\(F\)\(E\)\(H\)\(G\)\(I\)\(C\)\(D\)
  1. Calculate Spearman's rank correlation coefficient for these data.
  2. Test, at the \(5 \%\) level of significance, whether or not there is a relationship between the price and the taste of these strawberry jams. State your hypotheses clearly. A friend suggests that it would be better to use the price per 100 grams, \(c\), and the mark for the taste, \(m\), for each strawberry jam rather than rank them. Given that $$\mathrm { S } _ { c c } = 2.0455 \quad \mathrm {~S} _ { m m } = 243.5556 \quad \mathrm {~S} _ { c m } = 16.4943$$
  3. calculate the product moment correlation coefficient between the price and the mark for taste of these strawberry jams, giving your answer correct to 3 decimal places.
  4. Use your value of the product moment correlation coefficient to test, at the \(5 \%\) level of significance, whether or not there is evidence of a positive correlation between the price and the mark for taste of these 9 strawberry jams. State your hypotheses clearly.
  5. State which of the tests in parts (b) and (d) is more appropriate for the cafe owner to use. Give a reason for your answer.
Edexcel S3 2021 October Q4
  1. A local village radio station, LSB, decides to survey adults in its broadcasting area about the programmes it produces.
    \(L S B\) broadcasts to 4 villages \(\mathrm { A } , \mathrm { B } , \mathrm { C }\) and D .
    The number of households in each of the villages is given below.
VillageNumber of households
A41
B164
C123
D82
LSB decides to take a stratified sample of 200 households.
  1. Explain how to select the households for this stratified sample.
    (3) One of the questions in the survey related to the age group of each member of the household and whether they listen to \(L S B\). The data received are shown below.
    \multirow{2}{*}{}Age group
    18-4950-69Older than 69
    Listen to LSB13016265
    Do not listen to LSB789862
    The data are to be used to determine whether or not there is an association between the age group and whether they listen to \(L S B\).
  2. Calculate the expected frequencies for the age group 50-69 that
    1. listen to \(L S B\)
    2. do not listen to \(L S B\)
      (2) Given that for the other 4 classes \(\sum \frac { ( O - E ) ^ { 2 } } { E } = 4.657\) to 3 decimal places,
  3. test at the \(5 \%\) level of significance, whether or not there is evidence of an association between age and listening to \(L S B\). Show your working clearly, stating the degrees of freedom and the critical value.
Edexcel S3 2021 October Q5
  1. Assam produces bags of flour. The stated weight printed on the bags of flour is 3 kg . The weights of the bags of flour are normally distributed with standard deviation 0.015 kg .
Assam weighs a random sample of 9 bags of flour and finds their mean weight is 2.977 kg .
  1. Calculate the \(99 \%\) confidence interval for the mean weight of a bag of flour. Give your limits to 3 decimal places. Assam decides to increase the amount of flour put into the bags.
  2. Explain why the confidence interval has led Assam to take this action. After the increase a random sample of \(n\) bags of flour is taken. The sample mean weight of these \(n\) bags is 2.995 kg . A \(95 \%\) confidence interval for \(\mu\) gave a lower limit of less than 2.991 kg .
  3. Find the maximum value of \(n\).
    VILV SIHI NI IIII M I ON OC
    VIAV SIHI NI III IM I ON OO
    VIAV SIHI NI III HM ION OC
Edexcel S3 2021 October Q6
6. Amala believes that the resting heart rate is lower in men who exercise regularly compared to men who do not exercise regularly. She measures the resting heart rate, \(h\), of a random sample of 50 men who exercise regularly and a random sample of 40 men who do not exercise regularly. Her results are summarised in the table below.
\cline { 2 - 6 } \multicolumn{1}{c|}{}
Sample
size
\(\sum \boldsymbol { h }\)\(\sum \boldsymbol { h } ^ { 2 }\)
Unbiased
estimate of
the mean
Unbiased
estimate of
the variance
Exercise regularly503270214676\(\alpha\)\(\beta\)
Do not exercise
regularly
40283220166070.829.6
  1. Calculate the value of \(\alpha\) and the value of \(\beta\)
  2. Test, at the \(5 \%\) level of significance, whether there is evidence to support Amala's belief. State your hypotheses clearly.
  3. Explain the significance of the central limit theorem to the test in part (b).
  4. State two assumptions you have made in carrying out the test in part (b).
Edexcel S3 2021 October Q7
  1. A company produces bricks.
The weight of a brick, \(B \mathrm {~kg}\), is such that \(B \sim \mathrm {~N} \left( 1.96 , \sqrt { 0.003 } ^ { 2 } \right)\)
Two bricks are chosen at random.
  1. Find the probability that the difference in weight of the 2 bricks is greater than 0.1 kg A random sample of \(n\) bricks is to be taken.
  2. Find the minimum sample size such that the probability of the sample mean being greater than 2 is less than 1\% The bricks are randomly selected and stacked on pallets.
    The weight of an empty pallet, \(E \mathrm {~kg}\), is such that \(E \sim \mathrm {~N} \left( 21.8 , \sqrt { 0.6 } ^ { 2 } \right)\)
    The random variable \(M\) represents the total weight of a pallet stacked with 500 bricks. The random variable \(T\) represents the total weight of a container of cement.
    Given that \(T\) is independent of \(M\) and that \(T \sim \mathrm {~N} \left( 774 , \sqrt { 1.8 } ^ { 2 } \right)\)
  3. calculate \(\mathrm { P } ( 4 T > 100 + 3 M )\)
Edexcel S3 2018 Specimen Q1
  1. The names of the 720 members of a swimming club are listed alphabetically in the club's membership book. The chairman of the swimming club wishes to select a systematic sample of 40 names. The names are numbered from 001 to 720 and a number between 001 and \(w\) is selected at random. The corresponding name and every \(x\) th name thereafter are included in the sample.
    1. Find the value of \(w\).
    2. Find the value of \(x\).
    3. Write down the probability that the sample includes both the first name and the second name in the club's membership book.
    4. State one advantage and one disadvantage of systematic sampling in this case.
Edexcel S3 2018 Specimen Q2
2. Nine dancers, Adilzhan \(( A )\), Bianca \(( B )\), Chantelle \(( C )\), Lee \(( L )\), Nikki \(( N )\), Ranjit \(( R )\), Sergei \(( S )\), Thuy \(( T )\) and Yana \(( Y )\), perform in a dancing competition. Two judges rank each dancer according to how well they perform. The table below shows the rankings of each judge starting from the dancer with the strongest performance.
  1. Calculate Spearman's rank correlation coefficient for these data.
  2. Stating your hypotheses clearly, test at the 1\% level of significance, whether or not the two judges are generally in agreement.
    Rank123456789
    Judge 1\(S\)\(N\)\(B\)\(C\)\(T\)\(A\)\(Y\)\(R\)\(L\)
    Judge 2\(S\)\(T\)\(N\)\(B\)\(C\)\(Y\)\(L\)\(A\)\(R\)
  3. Calculate Spearman's rank correlation coefficient for these data.
Edexcel S3 2018 Specimen Q3
3. The number of accidents on a particular stretch of motorway was recorded each day for 200 consecutive days. The results are summarised in the following table.
Number of accidents012345
Frequency4757463596
  1. Show that the mean number of accidents per day for these data is 1.6 A motorway supervisor believes that the number of accidents per day on this stretch of motorway can be modelled by a Poisson distribution. She uses the mean found in part (a) to calculate the expected frequencies for this model. Her results are given in the following table.
    Number of accidents012345 or more
    Frequency40.3864.61\(r\)27.5711.03\(s\)
  2. Find the value of \(r\) and the value of \(s\), giving your answers to 2 decimal places.
  3. Stating your hypotheses clearly, use a \(10 \%\) level of significance to test the motorway supervisor's belief. Show your working clearly.
Edexcel S3 2018 Specimen Q4
4. A farm produces potatoes. The potatoes are packed into sacks. The weight of a sack of potatoes is modelled by a normal distribution with mean 25.6 kg and standard deviation 0.24 kg
  1. Find the probability that two randomly chosen sacks of potatoes differ in weight by more than 0.5 kg Sacks of potatoes are randomly selected and packed onto pallets. The weight of an empty pallet is modelled by a normal distribution with mean 20.0 kg and standard deviation 0.32 kg Each full pallet of potatoes holds 30 sacks of potatoes.
  2. Find the probability that the total weight of a randomly chosen full pallet of potatoes is greater than 785 kg
    \includegraphics[max width=\textwidth, alt={}, center]{0434a6c1-686a-449d-ba16-dbb8e60288e8-15_2258_51_313_36}
Edexcel S3 2018 Specimen Q5
  1. A Head of Department at a large university believes that gender is independent of the grade obtained by students on a Business Foundation course. A random sample was taken of 200 male students and 160 female students who had studied the course.
The results are summarised below.
\cline { 3 - 4 } \multicolumn{2}{c|}{}MaleFemale
\multirow{3}{*}{Grade}Distinction\(18.5 \%\)\(27.5 \%\)
\cline { 2 - 4 }Merit\(63.5 \%\)\(60.0 \%\)
\cline { 2 - 4 }Unsatisfactory\(18.0 \%\)\(12.5 \%\)
Stating your hypotheses clearly, test the Head of Department's belief using a \(5 \%\) level of significance. Show your working clearly.
Edexcel S3 2018 Specimen Q6
6. As part of an investigation, a random sample was taken of 50 footballers who had completed an obstacle course in the early morning. The time taken by each of these footballers to complete the obstacle course, \(x\) minutes, was recorded and the results are summarised by $$\sum x = 1570 \quad \text { and } \quad \sum x ^ { 2 } = 49467.58$$
  1. Find unbiased estimates for the mean and variance of the time taken by footballers to complete the obstacle course in the early morning. An independent random sample was taken of 50 footballers who had completed the same obstacle course in the late afternoon. The time taken by each of these footballers to complete the obstacle course, \(y\) minutes, was recorded and the results are summarised as $$\bar { y } = 30.9 \quad \text { and } \quad s _ { y } ^ { 2 } = 3.03$$
  2. Test, at the \(5 \%\) level of significance, whether or not the mean time taken by footballers to complete the obstacle course in the early morning, is greater than the mean time taken by footballers to complete the obstacle course in the late afternoon. State your hypotheses clearly.
  3. Explain the relevance of the Central Limit Theorem to the test in part (b).
  4. State an assumption you have made in carrying out the test in part (b).
Edexcel S3 2018 Specimen Q7
  1. A fair six-sided die is labelled with the numbers \(1,2,3,4,5\) and 6
    (b) Find an approximation for the probability that the mean of the 40 scores is less than 3
    \includegraphics[max width=\textwidth, alt={}, center]{0434a6c1-686a-449d-ba16-dbb8e60288e8-24_204_714_237_251}