Questions S2 (1597 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR S2 2009 June Q1
6 marks Standard +0.3
1 The random variable \(H\) has the distribution \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\). It is given that \(\mathrm { P } ( H < 105.0 ) = 0.2420\) and \(\mathrm { P } ( H > 110.0 ) = 0.6915\). Find the values of \(\mu\) and \(\sigma\), giving your answers to a suitable degree of accuracy.
OCR S2 2009 June Q2
6 marks Moderate -0.5
2 The random variable \(D\) has the distribution \(\operatorname { Po } ( 20 )\). Using an appropriate approximation, which should be justified, calculate \(\mathrm { P } ( D \geqslant 25 )\).
OCR S2 2009 June Q3
7 marks Moderate -0.3
3 An electronics company is developing a new sound system. The company claims that \(60 \%\) of potential buyers think that the system would be good value for money. In a random sample of 12 potential buyers, 4 thought that it would be good value for money. Test, at the 5\% significance level, whether the proportion claimed by the company is too high.
OCR S2 2009 June Q4
7 marks Moderate -0.8
4 A survey is to be carried out to draw conclusions about the proportion \(p\) of residents of a town who support the building of a new supermarket. It is proposed to carry out the survey by interviewing a large number of people in the high street of the town, which attracts a large number of tourists.
  1. Give two different reasons why this proposed method is inappropriate.
  2. Suggest a good method of carrying out the survey.
  3. State two statistical properties of your survey method that would enable reliable conclusions about \(p\) to be drawn.
OCR S2 2009 June Q5
9 marks Moderate -0.8
5 In a large region of derelict land, bricks are found scattered in the earth.
  1. State two conditions needed for the number of bricks per cubic metre to be modelled by a Poisson distribution. Assume now that the number of bricks in 1 cubic metre of earth can be modelled by the distribution Po(3).
  2. Find the probability that the number of bricks in 4 cubic metres of earth is between 8 and 14 inclusive.
  3. Find the size of the largest volume of earth for which the probability that no bricks are found is at least 0.4.
OCR S2 2009 June Q6
10 marks Moderate -0.3
6 The continuous random variable \(R\) has the distribution \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\). The results of 100 observations of \(R\) are summarised by $$\Sigma r = 3360.0 , \quad \Sigma r ^ { 2 } = 115782.84 .$$
  1. Calculate an unbiased estimate of \(\mu\) and an unbiased estimate of \(\sigma ^ { 2 }\).
  2. The mean of 9 observations of \(R\) is denoted by \(\bar { R }\). Calculate an estimate of \(\mathrm { P } ( \bar { R } > 32.0 )\).
  3. Explain whether you need to use the Central Limit Theorem in your answer to part (ii).
OCR S2 2009 June Q7
16 marks Standard +0.3
7 The continuous random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 2 } { 9 } x ( 3 - x ) & 0 \leqslant x \leqslant 3 , \\ 0 & \text { otherwise } . \end{cases}$$
  1. Find the variance of \(X\).
  2. Show that the probability that a single observation of \(X\) lies between 0.0 and 0.5 is \(\frac { 2 } { 27 }\).
  3. 108 observations of \(X\) are obtained. Using a suitable approximation, find the probability that at least 10 of the observations lie between 0.0 and 0.5 .
  4. The mean of 108 observations of \(X\) is denoted by \(\bar { X }\). Write down the approximate distribution of \(\bar { X }\), giving the value(s) of any parameter(s).
OCR S2 2009 June Q8
11 marks Standard +0.3
8 In a large company the time taken for an employee to carry out a certain task is a normally distributed random variable with mean 78.0 s and unknown variance. A new training scheme is introduced and after its introduction the times taken by a random sample of 120 employees are recorded. The mean time for the sample is 76.4 s and an unbiased estimate of the population variance is \(68.9 \mathrm {~s} ^ { 2 }\).
  1. Test, at the \(1 \%\) significance level, whether the mean time taken for the task has changed.
  2. It is required to redesign the test so that the probability of making a Type I error is less than 0.01 when the sample mean is 77.0 s . Calculate an estimate of the smallest sample size needed, and explain why your answer is only an estimate.
OCR S2 2010 June Q1
7 marks Moderate -0.3
1
  1. The number of inhabitants of a village who are selected for jury service in the course of a 10-year period is a random variable with the distribution \(\operatorname { Po } ( 4.2 )\).
    (a) Find the probability that in the course of a 10-year period, at least 7 inhabitants are selected for jury service.
    (b) Find the probability that in 1 year, exactly 2 inhabitants are selected for jury service.
  2. Explain why the number of inhabitants of the village who contract influenza in 1 year can probably not be well modelled by a Poisson distribution.
OCR S2 2010 June Q2
5 marks Moderate -0.8
2 A university has a large number of students, of whom \(35 \%\) are studying science subjects. A sample of 10 students is obtained by listing all the students, giving each a serial number and selecting by using random numbers.
  1. Find the probability that fewer than 3 of the sample are studying science subjects.
  2. It is required that, in selecting the sample, the same student is not selected twice. Explain whether this requirement invalidates your calculation in part (i).
OCR S2 2010 June Q3
9 marks Standard +0.3
3 Tennis balls are dropped from a standard height, and the height of bounce, \(H \mathrm {~cm}\), is measured. \(H\) is a random variable with the distribution \(\mathrm { N } \left( 40 , \sigma ^ { 2 } \right)\). It is given that \(\mathrm { P } ( H < 32 ) = 0.2\).
  1. Find the value of \(\sigma\).
  2. 90 tennis balls are selected at random. Use an appropriate approximation to find the probability that more than 19 have \(H < 32\).
OCR S2 2010 June Q4
7 marks Moderate -0.3
4 The proportion of commuters in a town who travel to work by train is 0.4 . Following the opening of a new station car park, a random sample of 16 commuters is obtained, and 11 of these travel to work by train. Test at the \(1 \%\) significance level whether there is evidence of an increase in the proportion of commuters in this town who travel to work by train.
OCR S2 2010 June Q5
11 marks Challenging +1.2
5 The time \(T\) seconds needed for a computer to be ready to use, from the moment it is switched on, is a normally distributed random variable with standard deviation 5 seconds. The specification of the computer says that the population mean time should be not more than 30 seconds.
  1. A test is carried out, at the \(5 \%\) significance level, of whether the specification is being met, using the mean \(\bar { t }\) of a random sample of 10 times.
    (a) Find the critical region for the test, in terms of \(\bar { t }\).
    (b) Given that the population mean time is in fact 35 seconds, find the probability that the test results in a Type II error.
  2. Because of system degradation and memory load, the population mean time \(\mu\) seconds increases with the number of months of use, \(m\). A formula for \(\mu\) in terms of \(m\) is \(\mu = 20 + 0.6 m\). Use this formula to find the value of \(m\) for which the probability that the test results in rejection of the null hypothesis is 0.5 .
OCR S2 2010 June Q6
10 marks Standard +0.3
6
  1. The random variable \(D\) has the distribution \(\operatorname { Po } ( 24 )\). Use a suitable approximation to find \(P ( D > 30 )\).
  2. An experiment consists of 200 trials. For each trial, the probability that the result is a success is 0.98 , independent of all other trials. The total number of successes is denoted by \(E\).
    1. Explain why the distribution of \(E\) cannot be well approximated by a Poisson distribution.
    2. By considering the number of failures, use an appropriate Poisson approximation to find \(\mathrm { P } ( E \leqslant 194 )\).
OCR S2 2010 June Q7
11 marks Standard +0.3
7 A machine is designed to make paper with mean thickness 56.80 micrometres. The thicknesses, \(x\) micrometres, of a random sample of 300 sheets are summarised by $$n = 300 , \quad \Sigma x = 17085.0 , \quad \Sigma x ^ { 2 } = 973847.0 .$$ Test, at the \(10 \%\) significance level, whether the machine is producing paper of the designed thickness.
OCR S2 2010 June Q8
12 marks Standard +0.3
8 The continuous random variable \(X\) has probability density function given by $$\mathrm { f } ( x ) = \begin{cases} k x ^ { - a } & x \geqslant 1 \\ 0 & \text { otherwise } \end{cases}$$ where \(k\) and \(a\) are constants and \(a\) is greater than 1 .
  1. Show that \(k = a - 1\).
  2. Find the variance of \(X\) in the case \(a = 4\).
  3. It is given that \(\mathrm { P } ( X < 2 ) = 0.9\). Find the value of \(a\), correct to 3 significant figures.
OCR S2 2011 June Q1
3 marks Easy -1.8
1 In Fisher Avenue there are 263 houses, numbered 1 to 263. Explain how to obtain a random sample of 20 of these houses.
OCR S2 2011 June Q2
7 marks Standard +0.3
2 The random variable \(Y\) has the distribution \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\). It is given that $$\mathrm { P } ( Y < 48.0 ) = \mathrm { P } ( Y > 57.0 ) = 0.0668 .$$ Find the value \(y _ { 0 }\) such that \(\mathrm { P } \left( Y > y _ { 0 } \right) = 0.05\).
OCR S2 2011 June Q3
7 marks Challenging +1.2
3 The random variable \(X\) has the distribution \(\mathrm { N } \left( \mu , 5 ^ { 2 } \right)\). A hypothesis test is carried out of \(\mathrm { H } _ { 0 } : \mu = 20.0\) against \(\mathrm { H } _ { 1 } : \mu < 20.0\), at the \(1 \%\) level of significance, based on the mean of a sample of size 16. Given that in fact \(\mu = 15.0\), find the probability that the test results in a Type II error.
OCR S2 2011 June Q4
8 marks Standard +0.3
4 A continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} \frac { 3 } { 16 } ( x - 2 ) ^ { 2 } & 0 \leqslant x \leqslant 4 \\ 0 & \text { otherwise } \end{cases}$$
  1. Sketch the graph of \(y = \mathrm { f } ( x )\).
  2. Calculate the variance of \(X\).
  3. A student writes " \(X\) is more likely to occur when \(x\) takes values further away from 2 ". Explain whether you agree with this statement.
OCR S2 2011 June Q5
8 marks Moderate -0.3
5 A travel company finds from its records that \(40 \%\) of its customers book with travel agents. The company redesigns its website, and then carries out a survey of 10 randomly chosen customers. The result of the survey is that 1 of these customers booked with a travel agent.
  1. Test at the \(5 \%\) significance level whether the percentage of customers who book with travel agents has decreased.
  2. The managing director says that "Our redesigned website has resulted in a decrease in the percentage of our customers who book with travel agents." Comment on this statement.
OCR S2 2011 June Q6
12 marks Standard +0.3
6 Records show that before the year 1990 the maximum daily temperature \(T ^ { \circ } \mathrm { C }\) at a seaside resort in August can be modelled by a distribution with mean 24.3. The maximum temperatures of a random sample of 50 August days since 1990 can be summarised by $$n = 50 , \quad \Sigma t = 1314.0 , \quad \Sigma t ^ { 2 } = 36602.17 .$$
  1. Test, at the \(1 \%\) significance level, whether there is evidence of a change in the mean maximum daily temperature in August since 1990.
  2. Give a reason why it is possible to use the Central Limit Theorem in your test.
OCR S2 2011 June Q7
14 marks Standard +0.8
7 The number of customer complaints received by a company per day is denoted by \(X\). Assume that \(X\) has the distribution \(\operatorname { Po } ( 2.2 )\).
  1. In a week of 5 working days, the probability there are at least \(n\) customer complaints is 0.146 correct to 3 significant figures. Use tables to find the value of \(n\).
  2. Use a suitable approximation to find the probability that in a period of 20 working days there are fewer than 38 customer complaints. A week of 5 working days in which at least \(n\) customer complaints are received, where \(n\) is the value found in part (i), is called a 'bad' week.
  3. Use a suitable approximation to find the probability that, in 40 randomly chosen weeks, more than 7 are bad.
OCR S2 2011 June Q8
13 marks Standard +0.3
8
  1. A group of students is discussing the conditions that are needed if a Poisson distribution is to be a good model for the number of telephone calls received by a fire brigade on a working day.
    1. Alice says "Events must be independent". Explain why this condition may not hold in this context.
    2. State a different condition that is needed. Explain whether it is likely to hold in this context.
  2. The random variables \(R , S\) and \(T\) have independent Poisson distributions with means \(\lambda , \mu\) and \(\lambda + \mu\) respectively.
    1. In the case \(\lambda = 2.74\), find \(\mathrm { P } ( R > 2 )\).
    2. In the case \(\lambda = 2\) and \(\mu = 3\), find \(\mathrm { P } ( R = 0\) and \(S = 1 ) + \mathrm { P } ( R = 1\) and \(S = 0 )\). Give your answer correct to 4 decimal places.
    3. In the general case, show algebraically that $$\mathrm { P } ( R = 0 \text { and } S = 1 ) + \mathrm { P } ( R = 1 \text { and } S = 0 ) = \mathrm { P } ( T = 1 ) .$$
OCR S2 2012 June Q1
2 marks Easy -1.8
1 In one day's production, a machine produces 1000 CDs . Explain how to take a random sample of 15 CDs chosen from one day's production.