Questions M1 (1912 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE M1 2024 June Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{c3246fbe-6f77-48f7-98eb-19e9166008bc-10_323_1308_292_376} The diagram shows a track \(A B C D\) which lies in a vertical plane. The section \(A B\) is a straight line inclined at an angle of \(30 ^ { \circ }\) to the horizontal and is smooth. The section \(B C\) is a horizontal straight line and is rough. The section CD is a straight line inclined at an angle of \(30 ^ { \circ }\) to the horizontal and is rough. The lengths \(A B , B C\) and \(C D\) are each 2 m . A particle is released from rest at \(A\). The coefficient of friction between the particle and both \(B C\) and \(C D\) is \(\mu\). There is no change in the speed of the particle when it passes through either of the points \(B\) or \(C\).
  1. It is given that \(\mu = 0.1\). Find the distance which the particle has moved up the section \(C D\) when its speed is \(1 \mathrm {~ms} ^ { - 1 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{c3246fbe-6f77-48f7-98eb-19e9166008bc-10_2716_33_143_2014}
  2. It is given instead that with a different value of \(\mu\) the particle travels 1 m up the track from \(C\) before it comes instantaneously to rest. Find the value of \(\mu\) and the speed of the particle at the instant that it passes \(C\) for the second time.
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
Edexcel M1 Q2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a9f91ceb-662a-40cd-956b-815052b8f1a0-01_173_520_360_1891} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} A uniform \(\operatorname { rod } A B\) has weight 70 N and length 3 m . It rests in a horizontal position on two smooth supports placed at \(P\) and \(Q\), where \(A P = 0.5 \mathrm {~m}\), as shown in Fig. 1 . The reaction on the rod at \(P\) has magnitude 20 N . Find
  1. the magnitude of the reaction on the rod at \(Q\),
  2. the distance \(A Q\).
    . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a9f91ceb-662a-40cd-956b-815052b8f1a0-01_190_476_964_1905} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} A particle \(P\) of mass 2 kg is held in equilibrium under gravity by two light inextensible strings. One string is horizontal and the other is inclined at an angle \(\alpha\) to the horizontal, as shown in Fig. 2. The tension in the horizontal string is 15 N . The tension in the other string is \(T\) newtons.
  3. Find the size of the angle \(\alpha\).
    (6 marks)
  4. Find the value of \(T\). You must ensure that your answers to parts of questions are clearly labelled.
    You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.
Edexcel M1 Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a9f91ceb-662a-40cd-956b-815052b8f1a0-02_280_428_340_516} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Two particles \(A\) and \(B\) have masses \(3 m\) and \(k m\) respectively, where \(k > 3\). They are connected by a light inextensible string which passes over a smooth fixed pulley. The system is released from rest with the string taut and the hanging parts of the string vertical, as shown in Fig. 3. While the particles are moving freely, \(A\) has an acceleration of magnitude \(\frac { 2 } { 5 } g\).
  1. Find, in terms of \(m\) and \(g\), the tension in the string.
    (3 marks)
  2. State why \(B\) also has an acceleration of magnitude \(\frac { 2 } { 5 } g\).
  3. Find the value of \(k\).
  4. State how you have used the fact that the string is light.
    (1 mark)
Edexcel M1 Q4
4. A particle \(P\) moves in a straight line with constant velocity. Initially \(P\) is at the point \(A\) with position vector \(( 2 \mathbf { i } - \mathbf { j } ) \mathrm { m }\) relative to a fixed origin \(O\), and 2 s later it is at the point \(B\) with position vector \(( 6 \mathbf { i } + \mathbf { j } ) \mathrm { m }\).
  1. Find the velocity of \(P\).
  2. Find, in degrees to one decimal place, the size of the angle between the direction of motion of \(P\) and the vector \(\mathbf { i }\). Three seconds after it passes \(B\) the particle \(P\) reaches the point \(C\).
  3. Find, in m to one decimal place, the distance \(O C\).
Edexcel M1 Q5
5. Two small balls \(A\) and \(B\) have masses 0.6 kg and 0.2 kg respectively. They are moving towards each other in opposite directions on a horizontal table when they collide directly. Immediately before the collision, the speed of \(A\) is \(4.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the speed of \(B\) is \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Immediately after the collision, \(A\) and \(B\) move in the same direction and the speed of \(B\) is twice the speed of \(A\).
By modelling the balls as particles, find
  1. the speed of \(B\) immediately after the collision,
  2. the magnitude of the impulse exerted on \(B\) in the collision, stating the units in which your answer is given.
    (3 marks)
    The table is rough. After the collision, \(B\) moves a distance of 2 m on the table before coming to rest.
  3. Find the coefficient of friction between \(B\) and the table.
    (6 marks)
Edexcel M1 Q6
6. A parachutist drops from a helicopter \(H\) and falls vertically from rest towards the ground. Her parachute opens 2 s after she leaves \(H\) and her speed then reduces to \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). For the first 2 s her motion is modelled as that of a particle falling freely under gravity. For the next 5 s the model is motion with constant deceleration, so that her speed is \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at the end of this period. For the rest of the time before she reaches the ground, the model is motion with constant speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Sketch a speed-time graph to illustrate her motion from \(H\) to the ground.
    (3 marks)
  2. Find her speed when the parachute opens.
    (2 marks)
    A safety rule states that the helicopter must be high enough to allow the parachute to open and for the speed of a parachutist to reduce to \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) before reaching the ground. Using the assumptions made in the above model,
  3. find the minimum height of \(H\) for which the woman can make a drop without breaking this safety rule.
    (5 marks)
    Given that \(H\) is 125 m above the ground when the woman starts her drop,
  4. find the total time taken for her to reach the ground.
  5. State one way in which the model could be refined to make it more realistic.
    (1 mark)
OCR MEI M1 Q2
2 Particles of mass 2 kg and 4 kg are attached to the ends \(X\) and \(Y\) of a light, inextensible string. The string passes round fixed, smooth pulleys at \(\mathrm { P } , \mathrm { Q }\) and R , as shown in Fig. 2. The system is released from rest with the string taut. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9a79f274-1a3f-4d11-9775-313d82075035-002_478_397_1211_872} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure}
  1. State what information in the question tells you that
    (A) the tension is the same throughout the string,
    (B) the magnitudes of the accelerations of the particles at X and Y are the same. The tension in the string is \(T \mathrm {~N}\) and the magnitude of the acceleration of the particles is \(a \mathrm {~ms} ^ { - 2 }\).
  2. Draw a diagram showing the forces acting at X and a diagram showing the forces acting at Y .
  3. Write down equations of motion for the particles at X and at Y . Hence calculate the values of \(T\) and \(a\).
OCR MEI M1 Q5
5 A small box B of weight 400 N is held in equilibrium by two light strings AB and BC . The string BC is fixed at C . The end A of string AB is fixed so that AB is at an angle \(\alpha\) to the vertical where \(\alpha < 60 ^ { \circ }\). String BC is at \(60 ^ { \circ }\) to the vertical. This information is shown in Fig. 5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9a79f274-1a3f-4d11-9775-313d82075035-003_424_472_1599_774} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure}
  1. Draw a labelled diagram showing all the forces acting on the box.
  2. In one situation string AB is fixed so that \(\alpha = 30 ^ { \circ }\). By drawing a triangle of forces, or otherwise, calculate the tension in the string BC and the tension in the string AB .
  3. Show carefully, but briefly, that the box cannot be in equilibrium if \(\alpha = 60 ^ { \circ }\) and BC remains at \(60 ^ { \circ }\) to the vertical. 7 The trajectory ABCD of a small stone moving with negligible air resistance is shown in Fig. 7. AD is horizontal and BC is parallel to AD . The stone is projected from A with speed \(40 \mathrm {~ms} ^ { - 1 }\) at \(50 ^ { \circ }\) to the horizontal. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9a79f274-1a3f-4d11-9775-313d82075035-004_341_1107_484_498} \captionsetup{labelformat=empty} \caption{Fig. 7}
    \end{figure}
  4. Write down an expression for the horizontal displacement from A of the stone \(t\) seconds after projection. Write down also an expression for the vertical displacement at time \(t\).
  5. Show that the stone takes 6.253 seconds (to three decimal places) to travel from A to D . Calculate the range of the stone. You are given that \(X = 30\).
  6. Calculate the time it takes the stone to reach B . Hence determine the time for it to travel from A to C.
  7. Calculate the direction of the motion of the stone at \(\mathbf { C }\). Section B (36 marks)
OCR MEI M1 Q7
7 The trajectory ABCD of a small stone moving with negligible air resistance is shown in Fig. 7. AD is horizontal and BC is parallel to AD . The stone is projected from A with speed \(40 \mathrm {~ms} ^ { - 1 }\) at \(50 ^ { \circ }\) to the horizontal. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9a79f274-1a3f-4d11-9775-313d82075035-004_341_1107_484_498} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down an expression for the horizontal displacement from A of the stone \(t\) seconds after projection. Write down also an expression for the vertical displacement at time \(t\).
  2. Show that the stone takes 6.253 seconds (to three decimal places) to travel from A to D . Calculate the range of the stone. You are given that \(X = 30\).
  3. Calculate the time it takes the stone to reach B . Hence determine the time for it to travel from A to C.
  4. Calculate the direction of the motion of the stone at \(\mathbf { C }\). Section B (36 marks)
AQA M1 2005 January Q1
1 A train travels along a straight horizontal track. It is travelling at a speed of \(12 \mathrm {~ms} ^ { - 1 }\) when it begins to accelerate uniformly. It reaches a speed of \(40 \mathrm {~ms} ^ { - 1 }\) after accelerating for 100 seconds.
    1. Show that the acceleration of the train is \(0.28 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
    2. Find the distance that the train travelled in the 100 seconds.
  1. The mass of the train is 200 tonnes and a resistance force of 40000 N acts on the train. Find the magnitude of the driving force produced by the engine that acts on the train as it accelerates.
AQA M1 2005 January Q2
2 A particle, \(A\), of mass 12 kg is moving on a smooth horizontal surface with velocity \(\left[ \begin{array} { l } 4
7 \end{array} \right] \mathrm { m } \mathrm { s } ^ { - 1 }\). It then collides and coalesces with a second particle, \(B\), of mass 4 kg .
  1. If before the collision the velocity of \(B\) was \(\left[ \begin{array} { l } 2
    3 \end{array} \right] \mathrm { m } \mathrm { s } ^ { - 1 }\), find the velocity of the combined particle after the collision.
  2. If after the collision the velocity of the combined particle is \(\left[ \begin{array} { l } 1
    4 \end{array} \right] \mathrm { m } \mathrm { s } ^ { - 1 }\), find the velocity of \(B\) before the collision.
AQA M1 2005 January Q3
3 The diagram shows a rope that is attached to a box of mass 25 kg , which is being pulled along rough horizontal ground. The rope is at an angle of \(30 ^ { \circ }\) to the ground. The tension in the rope is 40 N . The box accelerates at \(0.1 \mathrm {~ms} ^ { - 2 }\).
\includegraphics[max width=\textwidth, alt={}, center]{eb1f2470-aeeb-4b1d-a6c0-bdeb7048edd5-3_214_729_504_644}
  1. Draw a diagram to show all of the forces acting on the box.
  2. Show that the magnitude of the friction force acting on the box is 32.1 N , correct to three significant figures.
  3. Show that the magnitude of the normal reaction force that the ground exerts on the box is 225 N .
  4. Find the coefficient of friction between the box and the ground.
  5. State what would happen to the magnitude of the friction force if the angle between the rope and the horizontal were increased. Give a reason for your answer.
AQA M1 2005 January Q4
4 Two particles are connected by a string, which passes over a pulley. Model the string as light and inextensible. The particles have masses of 2 kg and 5 kg . The particles are released from rest.
\includegraphics[max width=\textwidth, alt={}, center]{eb1f2470-aeeb-4b1d-a6c0-bdeb7048edd5-3_392_209_1685_909}
  1. State one modelling assumption that you should make about the pulley in order to determine the acceleration of the particles.
  2. By forming an equation of motion for each particle, show that the magnitude of the acceleration of each particle is \(4.2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  3. Find the tension in the string.
AQA M1 2005 January Q5
5 Two ropes are attached to a load of mass 500 kg . The ropes make angles of \(30 ^ { \circ }\) and \(45 ^ { \circ }\) to the vertical, as shown in the diagram. The tensions in these ropes are \(T _ { 1 }\) and \(T _ { 2 }\) newtons. The load is also supported by a vertical spring.
\includegraphics[max width=\textwidth, alt={}, center]{eb1f2470-aeeb-4b1d-a6c0-bdeb7048edd5-4_533_565_507_744} The system is in equilibrium and \(T _ { 1 } = 200\).
  1. Show that \(T _ { 2 } = 141\), correct to three significant figures.
  2. Find the force that the spring exerts on the load.
AQA M1 2005 January Q6
6 A motor boat can travel at a speed of \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) relative to the water. It is used to cross a river in which the current flows at \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The resultant velocity of the boat makes an angle of \(60 ^ { \circ }\) to the river bank, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{eb1f2470-aeeb-4b1d-a6c0-bdeb7048edd5-4_561_1339_1692_350} The angle between the direction in which the boat is travelling relative to the water and the resultant velocity is \(\alpha\).
  1. Show that \(\alpha = 16.8 ^ { \circ }\), correct to three significant figures.
  2. Find the magnitude of the resultant velocity.
AQA M1 2005 January Q7
7 The unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are directed east and north respectively. A yacht moves with a constant acceleration. At time \(t\) seconds the position vector of the yacht is \(\mathbf { r }\) metres. When \(t = 0\) the velocity of the yacht is \(( 2 \mathbf { i } - \mathbf { j } ) \mathrm { ms } ^ { - 1 }\), and when \(t = 10\) the velocity of the yacht is \(( - \mathbf { i } + \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  1. Find the acceleration of the yacht.
  2. When \(t = 0\) the yacht is 20 metres due east of the origin. Find an expression for \(\mathbf { r }\) in terms of \(t\).
    1. Show that when \(t = 20\) the yacht is due north of the origin.
    2. Find the speed of the yacht when \(t = 20\).
AQA M1 2005 January Q8
8 A football is placed on a horizontal surface. It is then kicked, so that it has an initial velocity of \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(40 ^ { \circ }\) above the horizontal.
  1. State two modelling assumptions that it would be appropriate to make when considering the motion of the football.
    1. Find the time that it takes for the ball to reach its maximum height.
    2. Hence show that the maximum height of the ball is 3.04 metres, correct to three significant figures.
  2. After the ball has reached its maximum height, it hits the bar of a goal at a height of 2.44 metres. Find the horizontal distance of the goal from the point where the ball was kicked.
AQA M1 2007 January Q1
1 Two particles \(A\) and \(B\) have masses of 3 kg and 2 kg respectively. They are moving along a straight horizontal line towards each other. Each particle is moving with a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when they collide.
\includegraphics[max width=\textwidth, alt={}, center]{965a176a-848c-478d-a748-80fc9dfe4399-2_225_579_676_660}
  1. If the particles coalesce during the collision to form a single particle, find the speed of the combined particle after the collision.
  2. If, after the collision, \(A\) moves in the same direction as before the collision with speed \(0.4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), find the speed of \(B\) after the collision.
AQA M1 2007 January Q2
2 A lift rises vertically from rest with a constant acceleration.
After 4 seconds, it is moving upwards with a velocity of \(2 \mathrm {~ms} ^ { - 1 }\).
It then moves with a constant velocity for 5 seconds.
The lift then slows down uniformly, coming to rest after it has been moving for a total of 12 seconds.
  1. Sketch a velocity-time graph for the motion of the lift.
  2. Calculate the total distance travelled by the lift.
  3. The lift is raised by a single vertical cable. The mass of the lift is 300 kg . Find the maximum tension in the cable during this motion.
AQA M1 2007 January Q3
3 The diagram shows three forces which act in the same plane and are in equilibrium.
\includegraphics[max width=\textwidth, alt={}, center]{965a176a-848c-478d-a748-80fc9dfe4399-3_419_516_383_761}
  1. Find \(F\).
  2. Find \(\alpha\).
AQA M1 2007 January Q4
4 The diagram shows a block, of mass 13 kg , on a rough horizontal surface. It is attached by a string that passes over a smooth peg to a sphere of mass 7 kg , as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{965a176a-848c-478d-a748-80fc9dfe4399-3_323_974_1256_575} The system is released from rest, and after 4 seconds the block and the sphere both have speed \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), and the block has not reached the peg.
  1. State two assumptions that you should make about the string in order to model the motion of the sphere and the block.
  2. Show that the acceleration of the sphere is \(1.5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  3. Find the tension in the string.
  4. Find the coefficient of friction between the block and the surface.
AQA M1 2007 January Q5
5 A girl in a boat is rowing across a river, in which the water is flowing at \(0.1 \mathrm {~ms} ^ { - 1 }\). The velocity of the boat relative to the water is \(0.3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and is perpendicular to the bank, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{965a176a-848c-478d-a748-80fc9dfe4399-4_314_1152_468_450}
  1. Find the magnitude of the resultant velocity of the boat.
  2. Find the acute angle between the resultant velocity and the bank.
  3. The width of the river is 15 metres.
    1. Find the time that it takes the boat to cross the river.
    2. Find the total distance travelled by the boat as it crosses the river.
AQA M1 2007 January Q6
6 A trolley, of mass 100 kg , rolls at a constant speed along a straight line down a slope inclined at an angle of \(4 ^ { \circ }\) to the horizontal. Assume that a constant resistance force, of magnitude \(P\) newtons, acts on the trolley as it moves. Model the trolley as a particle.
  1. Draw a diagram to show the forces acting on the trolley.
  2. Show that \(P = 68.4 \mathrm {~N}\), correct to three significant figures.
    1. Find the acceleration of the trolley if it rolls down a slope inclined at \(5 ^ { \circ }\) to the horizontal and experiences the same constant force of magnitude \(P\) that you found in part (b).
    2. Make one criticism of the assumption that the resistance force on the trolley is constant.
AQA M1 2007 January Q7
7 A golf ball is struck from a point on horizontal ground so that it has an initial velocity of \(50 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(40 ^ { \circ }\) above the horizontal. Assume that the golf ball is a particle and its weight is the only force that acts on it once it is moving.
  1. Find the maximum height of the golf ball.
  2. After it has reached its maximum height, the golf ball descends but hits a tree at a point which is at a height of 6 metres above ground level.
    \includegraphics[max width=\textwidth, alt={}, center]{965a176a-848c-478d-a748-80fc9dfe4399-5_289_1358_813_335} \begin{displayquote} Find the time that it takes for the ball to travel from the point where it was struck to the tree. \end{displayquote}
AQA M1 2007 January Q8
8 A particle is initially at the origin, where it has velocity \(( 5 \mathbf { i } - 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). It moves with a constant acceleration \(\mathbf { a } \mathrm { ms } ^ { - 2 }\) for 10 seconds to the point with position vector \(75 \mathbf { i }\) metres.
  1. Show that \(\mathbf { a } = 0.5 \mathbf { i } + 0.4 \mathbf { j }\).
  2. Find the position vector of the particle 8 seconds after it has left the origin.
  3. Find the position vector of the particle when it is travelling parallel to the unit vector \(\mathbf { i }\).